Метка: python

Munch – вседозволенный объект

КДПВ

Привет. Хочу познакомить вас библиотекой Munch, которая является форком более старой библиотеки Bunch. Рассмотрим суть проблемы, которую она решает. Задать атрибуты объекта, не описывая их по одному в конструкторе. Легче понять на примере:

>>> f = object()
>>> f.x = 10
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'object' object has no attribute 'x'

Видно, что object нам не поможет. Но в Python 3 можно сделать пустой класс, это не вызовет ошибки:

class Bunch: ...

foo = Bunch()
foo.x = 10
foo.y = 20

И в принципе этого может быть достаточно. Но иногда хочется больше. В моей практике возникла задача, когда нужно было имитировать классы из сторонней библиотеки. Использовать сами эти классы было громоздко и неудобно, потому что там было много лишнего кода, и нужно было придумать решение, как от него избавиться, чтобы избежать ошибок и побочных эффектов. Пришла на помощь библиотека с которая к слову имеет кучу мелких удобных возможностей.

Установка:

pip install munch

Объект Munch – это наследник словаря dict, с ним можно работать как со словарем, но можно также произвольно работать с его атрибутами:

from munch import *

# пустой
b = Munch()

# задаем атрибуты
b.hello = 'world'
print(b.hello)  # world

b['hello'] += "!"
print(b.hello)  # world!

print(b.hello is b['hello'])  # True

# атрибут может быть тоже Munch
b.bar = Munch()
b.bar.baz = 100
print(b.bar.baz)  # 100

Т.е. мы может обращаться к данным как через точку (как атрибут), так и через квадратные скобки (как с обычным словарем) – это будут одни и те же данные, при условии равных имен.

Очень удобная фишка – создание Munch через конструктор, просто перечисляем ключевые слова, и они станут атрибутами:

# задать через конструктор
c = Munch(x=10, y=20, z=30)
print(c.x, c.y, c.z)  # 10 20 30

С Munch можно работать, как с обычным dict, например:

c = Munch(x=10, y=20, z=30)
print(list(c.keys()))  # список атрибутов

c.update({
    'w': 10,
    'name': 'ganesh'
})
print(c)  # Munch({'x': 10, 'y': 20, 'z': 30, 'w': 10, 'name': 'ganesh'})

print([(k, v) for k, v in c.items()])
# [('x', 10), ('y', 20), ('z', 30), ('w', 10), ('name', 'ganesh')]

Удобно сеарилизовтать такие объекты:

# JSON

b = Munch(foo=Munch(lol=True), hello=42, ponies='are pretty!')
import json
print(json.dumps(b))
#  {"foo": {"lol": true}, "hello": 42, "ponies": "are pretty!"}

# YAML - если есть.
import yaml
print(yaml.dump(b))  # или
print(yaml.safe_dump(b))

Замечание

В библиотеку collections Python 3 уже включен объект UserDict со схожей функциональностью:

from collections import UserDict

a = UserDict()
a.p = 10

Специально для канала @pyway. Подписывайтесь на мой канал в Телеграм @pyway 👈 

Короткое замыкание

Провод горит в розетке

Поговорим о логических операциях. Допустим у нас есть цепочка из or

if x() or y() or z():
    print('bingo!')

Чтобы print сработал, нужно, чтобы хотя бы один из трех вызовов давал бы True (или приводился к True). Что если x() сразу вернет True? Тогда, очевидно, все выражение будет равняться True в любом случае и независимо от того, что будет в y() и z(). Если смысл их вычислять? Нет! Python и не вычисляет. Тем самым достигается некоторая оптимизация, которая называется short circuiting (или короткое замыкание).

Это хорошо, только, если в оставшихся логических выражениях нет побочных эффектов, потому они не будут выполнены, если вычисление логического выражение будет остановлено. Давайте проверим:

def check(b):
    print('check.')
    return b

if True or check(True):
    print('ok.')  # ok.

if False or check(True):
    print('ok.')  # check. ok.

В первом случае check не работает, потому что первый операнд True уже предопределит судьбу выражения. А во втором случае – сработает, потому первый операнд False не дает определенности и нужно вычислить check().

Аналогично все с оператором and: как только первый операнд в цепочке вернет False, выполнение прекратиться. 

if True and False and check(True):
    ...  # не выполнится check

Встроенные функции all и any тоже используют короткое замыкание, то есть all перестает проверять на первом False, а any – на первом True.

all(check(i) for i in [1, 1, 0, 1, 1])  # выведет 3 check из 5
any(check(i) for i in [0, 1, 0, 0, 0])  # выведет 2 check из 5

Эту особенность стоит помнить. Лично я сталкивался с алгоритмом, где было что-то вроде:

while step(x, y, True) or step(x, y, False): ...

По задумке оба step должны выполнятся на каждой итерации, но из-за короткого замыкания второй из них иногда не выполнялся; алгоритм работал неверно.

Что если не нужно такое поведение?

Оказывается, что можно применять побитовые операторы «или» и «и» в логических выражениях, при этом каждый операнд будет вычисляться в любом случае. Цепочка вычисления не прервется, даже если результат уже очевиден. 

def check(b):
    print('check.')
    return b

check(False) & check(False)  # & – битовое и
check(True) | check(False)   # | - битовое или

В этом случае оба check сработают!

❗Внимание: есть подводные камни. Этот прием работает корректно только с булевыми типами! Если мы подставим целые числа, то результат может быть не тот, что ожидается. Яркий пример – это числа 1 и 2:

>>> bool(1 and 2)
True
>>> bool(1 & 2)
False
>>> 1 & 2
0

Поэтому, в логическом выражении, если тип операнда не булев, то его нужно привести. Недавний пример должен быть переписан так:

while bool(step(x, y, True)) | bool(step(x, y, False)):
    ...

Второй подводный камень: приоритет операторов | и & гораздо выше, чем у not, and и or. Так что, если миксуем их, то всегда ставим скобки: 

>>> not False or True
True
>>> not False | True
False
>>> (not False) | True
True

Не подумайте, что я призываю использовать побитовые операции вместо логических. Но в редких случаях это может быть оправдано.

Специально для канала @pyway. Подписывайтесь на мой канал в Телеграм @pyway 👈 

​​Анимация Jupyter Notebook

Сегодня мы будем анимировать график прямо внутри Jupyter Notebook. Сперва сделаем плавную отрисовку графика. Переключим режим отображения графиков в notebook:

%matplotlib notebook

Импортируем все, что нужно:

import matplotlib.pyplot as plt
from matplotlib import animation
import numpy as np

Сгенерируем наши данные:

# время (200 точек)
t = np.linspace(0, 2 * np.pi, 200)
x = np.sin(t)  # синусоида

Создадим пустой график:

fig, ax = plt.subplots()
# пределы отображения
ax.axis([0, 2 * np.pi, -2, 2])
l, = ax.plot([], [])

Функция animate будет вызываться при отрисовка каждого кадра, аргумент i – номер кадра:

def animate(i):
    # рисуем данные только от 0 до i
    # на первом кадре будет 0 точек, 
    # а на последнем - все
    l.set_data(t[:i], x[:i])

Запускаем анимацию:

fps = 30  # карды в сек
# frames - число кадров анимации
ani = animation.FuncAnimation(fig, animate, frames=len(t), interval=1000.0 / fps)

Если мы хотим анимировать сами данные, например, заставить синусоиду «плясать», то на каждом шаге перегенерируем данные заново, используя переменную i:

def animate(i):
    x = np.sin(t - i / len(t) * np.pi * 2) * np.sin(t * 15)
    l.set_data(t, x)

Можно сохранить в GIF:

ani.save('myAnimation.gif', writer='imagemagick', fps=30)

Сам ноутбук я загрузил на GitHub, но поиграться онлайн с ним не получится, надо скачать себе и запустить локально. Анимированные графики отрисовываются в реальном времени, поэтому требуют достаточно много ресурсов. Пример 3D анимации:

Специально для канала @pyway. Подписывайтесь на мой канал в Телеграм @pyway 👈 

Временные файлы и директории

Временные файлы и директории нужны, если промежуточные данные слишком велики, чтобы держать их в оперативной памяти. Или бывают случаи, что программа или компонент обрабатывает только файлы и не может принимать данные по другим каналам.

Для создания временных файлов и директорий есть модуль tempfile. Удобно, что временные файлы создаются в специальном месте ФС и удаляются автоматически после закрытия. Нам можно не думать, куда положить временный файл, как его назвать и как почистить мусор после выполнения программы.

import tempfile

with tempfile.NamedTemporaryFile() as fp:
    print(fp.name)  # путь к файлу
    fp.write(b'Hello world!')
    fp.seek(0)
    print(fp.read())

fp – файло-подобный объект, вроде того, что идет из open. С ним работают также, как с обычным файлом. Он будет удален в момент закрытия.

Есть еще TemporaryFile. Отличие NamedTemporaryFile от TemporaryFile в том, что NamedTemporaryFile будет гарантированно виден в файловой системе и иметь атрибут name, тогда как второй может быть и не виден в ФС. NamedTemporaryFile можно создать с ключем delete=False, чтобы он не был удален. А TemporaryFile всегда будет удален при закрытии.

Режим открытия временного файла по умолчанию "w+b", т.е. можно писать и читать бинарный данные. Можно изменить передав аргумент mode:

tempfile.NamedTemporaryFile(mode='w')

TemporaryDirectory – создает временную директорию и возвращает строку – путь к ней. Мы можем создавать в директории любые файлы в любом количестве. После закрытия контекстного менеджера директория и все файлы в ней будут автоматически удалены. Очень удобно! Можно не запоминать названия или ссылки на файлы. Пример:

with tempfile.TemporaryDirectory() as temp:
    with open(os.path.join(temp, '1.txt'), 'w') as f:
        f.write('hello')

Если надо вручную очистить (можно только 1 раз, после она будет удалена):

tmp = tempfile.TemporaryDirectory()
with open(os.path.join(tmp.name, '1.txt'), 'w') as f:
    f.write('hello')
tmp.cleanup()  # очистка

Узнать где хранятся временные файлы:

>>> tempfile.gettempdir()
'/var/folders/m8/1_wxy73215q9n2vrjetnw0xjc0000gn/T'

Эта директория берется из переменных окружения TMPDIR, TEMP, TEMP или это директория C:\TEMP, C:\TMP, \TEMP и \TMP (для Windows) или /tmp, /var/tmp и /usr/tmp для остальных систем. 

Как поменять место хранения временных данных процесса?

  1. Изменить переменную окружения: TMPDIR="/home/me/temp" python my_program.my
  2. Передать в функции создания временных файлов аргумент dir с нужным путем: tempfile.NamedTemporaryFile(dir='/home/me')

Специально для канала @pyway. Подписывайтесь на мой канал в Телеграм @pyway 👈 

Абстрактный класс ABC

Просто лого для статьи

Абстрактный класс – класс, содержащий один и более абстрактных методов.

Абстрактный метод – метод, который объявлен, но не реализован.

Абстрактный класс не может быть инстанциирован (создан его экземпляр). Нужно наследовать этот класс и реализовать (переопределить) все абстрактные методы, и только после этого можно создавать экземпляры такого наследника.

В Python нет синтаксической поддержки абстрактных классов, но есть встроенный модуль abc (расшифровка – abstract base classes), который помогает проектировать абстрактные сущности.

Абстрактный класс наследуют от ABC (Python 3.4+) или указывают метакласс ABCMeta (для Python 3.0+):

from abc import ABC, ABCMeta
class Hero(ABC):
    ...

# или:
class Hero(metaclass=ABCMeta):
    ...

Любой из вариантов работает, первый современнее и короче. На данном этапе мы можем создавать объекты этих классов, потому что в них пока не абстрактных методов. Добавим:

from abc import ABC, abstractmethod
class Hero(ABC):
    @abstractmethod
    def attack(self):
        pass

Hero() – выдаст ошибку "TypeError: Can't instantiate abstract class Hero with abstract methods attack", которая говорит, что в классе Hero есть абстрактный метод attack. Мы вставили в него заглушку pass, но вообще там может быть какая-то реализация. Отнаследуем от героя Hero – конкретный подкласс лучника Archer:

class Archer(Hero):
    def attack(self):
        print('выстрел из лука')
Archer().attack()

Вот объект Archer мы можем уже создать и использовать реализацию метода attack

Кроме обычных методов, абстрактными можно обозначить и статические, классовые методы, а также свойства:

class C(ABC):
   @classmethod
   @abstractmethod
   def my_abstract_classmethod(cls):
       ...

   @staticmethod
   @abstractmethod
   def my_abstract_staticmethod():
       ...

   @property
   @abstractmethod
   def my_abstract_property(self):
       ...

   @my_abstract_property.setter
   @abstractmethod
   def my_abstract_property(self, val):
       ...

Абстрактные классы широко фигурируют в ООП, часто всплывают в шаблонах проектирования. Они говорят, что общий интерфейс уже обозначен, но этот класс еще не предназначен для использования, кроме как для наследования от него конкретных потомков.

Формально говоря, абстрактные классы для Python не являются чем-то необходимым в силу динамичности языка. Если мы выкинем все упоминания абстрактности классов и методов из рабочего кода, он продолжит работать, как и ранее. Абстрактные классы нужны на этапе проектирования или расширения кода, чтобы обеспечивать «правильные» взаимодействия новых классов, защищая от создания экземпляров абстрактных классов. Важно помнить, что эта защита срабатывает на этапе выполнения программы, а не компиляции, как в языках Java, C++ или C#!

Специально для канала @pyway. Подписывайтесь на мой канал в Телеграм @pyway 👈