Python 3.8 здесь!

3.8

🐍Отложим дела ради классной новости! Python версии 3.8 официально релизнулся!

Что в новой версии?

1️⃣ Оператор морж (писал о нем ранее). Присваивание переменной внутри других выражений:

if (n := len(a)) > 10:
    print("слишком длинно")

while (block := f.read(256)) != '':
    process(block)

[clean_name.title() for name in names
 if (clean_name := normalize('NFC', name)) in allowed_names]

2️⃣ Разделитель позиционных аргументов (слэш /). Указывает, что первые несколько аргументов могут быть только позиционными (в строгом порядке, без указания имени). Напомню, что именные аргументы передаются с указанием имени, и не важно в каком порядке. В примере ниже a и b – только позиционные, c и d — могут быть позиционные или переданы по имени, а e и f – исключительно именные:

def f(a, b, /, c, d, *, e, f):
    print(a, b, c, d, e, f)

# разрешенный вызов:
f(10, 20, 30, d=40, e=50, f=60)

# НЕЛЬЗЯ передать b по имени 
# (b стоит до слэша)
f(10, b=20, c=30, d=40, e=50, f=60) 

# НЕЛЬЗЯ передать e без указания имени
# (e стоит после звездочки)
f(10, 20, 30, 40, 50, f=60) 

3️⃣ Спецификатор = для f-строк. Тут проще на примере, раньше мы писали с повторами:

>>> user = 'eric_idle'
>>> since = date(1975, 7, 31)
>>> f'user={user} since={since}'
"user='eric_idle' since=datetime.date(1975, 7, 31)"

А теперь можно так:

>>> f'{user=} {since=}'
"user='eric_idle' since=datetime.date(1975, 7, 31)"

После знака равно можно добавлять и прочие спецификаторы форматирования:

>>> delta = date.today() - since
>>> f'{user=!s} {delta.days=:,d}'
'user=eric_idle delta.days=16,075'

Для отладки принтами — просто восторг!

4️⃣ Теперь можно continue внутри finally

Еще есть множество улучшений со стороны C-API, всякие хуки аудита, вектор-коллы. Новая настройка PYTHONPYCACHEPREFIX, чтобы вынести кэш байткода из стандартной директории pycache куда вам удобно. Очень-очень много разных мелких изменений в стандартных модулях и функциях, о которых расскажу при случае.

Что нового по-английски

Как вам новая версия?

Пары из списка

В Python есть элегантный прием, который позволяет получить пары соседних элементов из списка. Нужно использовать функцию zip, передав в нее сам список и его же со сдвигом 1:

a = [1, 2, 3, 4, 5, 6]

for x1, x2 in zip(a, a[1:]):
    print(x1, x2)

Вывод:

1 2
2 3
3 4
4 5
5 6

Специально для канала @pyway.

Великий random

Генераторы случайных чисел (аббр. ГСЧ или RNG) можно разделить на псевдослучайные генераторы (pseudo random number generator – PRNG) и настоящие генераторы (true random number generator – TRNG). Настоящие случайное число может быть получено, например, честным бросанием (без мухлежа) игрального кубика. Но, цифровая техника, в т.ч. и компьютер — вещь точная и детерминированная. И нет так очевидно, где нам там брать случайные числа. Да, бывают аппаратные ГСЧ, построенные на аналоговых шумах или квантовых эффектах, но они не всегда доступны простым пользователям. Однако математики разработали алгоритмы, по которым можно с помощью простых и точных операций (типа сложения и деления) получать «иллюзию» случайности.

Давайте для начала рассмотрим линейный конгруэнтный метод и попробуем сконструировать свой рандом. Все начинается с зерна (seed). x[0] = seed. Следующие случайное число будет равно x[i + 1] = (a * x[i] + b) mod c. Каждое из них будет в пределах [0..c). Вот реализация:

class MyRandom:
    def __init__(self, seed=42):
        self._state = seed

    def random(self):
        self._state = (5 * self._state + 9) % 17
        return self._state


r = MyRandom(42)
print([r.random() for _ in range(10)])
# [15, 16, 4, 12, 1, 14, 11, 13, 6, 5]

r2 = MyRandom(24)
print([r2.random() for _ in range(10)])
# [10, 8, 15, 16, 4, 12, 1, 14, 11, 13]

r3 = MyRandom(42)
print([r3.random() for _ in range(10)])
# [15, 16, 4, 12, 1, 14, 11, 13, 6, 5]

Первое. Последовательности кажутся случайными, но на самом деле качество их невелико. Через некоторые время числа начинают повторятся. Последовательность периодична. Второе. Наш псевдослучайный генератор выдает одинаковые последовательности для одинаковых seed. Алгоритм детерминирован. Последнее свойство бывает вредно и полезно. Представим, что вы проводите эксперимент. Допустим, учите нейросеть. Инициализировав веса случайными числами, вы получаете какой-то результат. Далее вы меняете что-то в архитектуре сети и запускаете снова, и получаете иной результат. Но как убедиться, повлияли ли ваши изменения в коде, или просто иная случайная инициализация изменила результат. Имеет смысл зафиксировать seed генератора случайных чисел константой в начале программы. При следующем запуске мы получим точно такую же инициализацию сети, как и в предыдущем.

Но, если мы не хотим повторяемости, то можно инициализировать генератор какой-то меняющейся от запуска к запуску переменной (например, временем):

import time
r4 = MyRandom(int(time.time()))
print([r4.random() for _ in range(10)])
# [3, 7, 10, 8, 15, 16, 4, 12, 1, 14]

Для получение случайных величин в Python есть несколько способов. Мы рассмотрим следующие:

• Встроенный модуль random
• numpy.random из библиотеки NumPy
• Функцию os.urandom
• Встроенный модуль secrets
• Встроенный модуль uuid

Модуль random

Самый популярный вариант: модель встроенный random. Модуль random предоставляет набор функций для генерации псевдослучайных чисел. Реализована генерация на языке Си (исходник) по более хитрому алгоритму «вихрь Мерсенна», разработанному в 1997 году. Он дает более «качественные» псевдослучайные числа. Но они по-прежнему получается из начального зерна (seed) путем совершения математических операций. Зная seed и алгоритм можно воспроизвести последовательность случайных чисел; более того существуют алгоритмы позволяющие вычислить из последовательности чисел ее seed. Поэтому такие алгоритмы не пригодны для генерации конфиденциальных данных: паролей, и ключей доступа. Но он вполне сгодится для генерации случайностей в играх (не азартных) и прочих приложений, где не страшно, если кто-то сможет воспроизвести и продолжить последовательностей случайных чисел. Воспроизводимость случайностей поможет вам в задачах статистики, в симуляциях различных процессов.

Приступим:

>>> import random

random.seed(new_seed) – сброс ГСЧ с новым seed:

>>> random.seed(4242)
>>> random.random()
0.8624508153567833
>>> random.random()
0.41569372364698065

>>> random.seed(4242)
>>> random.random()
0.8624508153567833
>>> random.random()
0.41569372364698065

Когда мы второй раз задали тот же seed, ГСЧ выдает точно такие же случайные числа. Если мы не задаем seed, то ГСЧ будет скорее всего инициализирован системным временем, и значения будут отличаться от запуска к запуску.

random.randint(a, b) – случайное целое число от a до b (включительно):

>>> random.randint(5, 8)
5
>>> [random.randint(5, 8) for _ in range(10)]
[6, 8, 5, 8, 6, 6, 8, 5, 5, 6]

random.randrange(a, b, step) – случайное целое число от a до b (не включая b) с шагом step. Аргументы имеют такой же смысл, как у функции range. Если мы зададим только a, получим число в [0, a) с шагом 1; если задаем a и b, то в число будет в диапазоне [a, b):

>>> [random.randrange(10) for _ in range(5)]
[9, 3, 7, 0, 4]
>>> [random.randrange(10, 20) for _ in range(5)]
[15, 10, 15, 12, 18]
>>> [random.randrange(10, 20, 2) for _ in range(5)]
[14, 14, 18, 16, 16]

random.choice(seq) – выбирает из последовательности seq случайный элемент. Последовательность должна иметь длину (len). Например list, tuple, range – подойдут, а произвольные генераторы – нет.

>>> alist = [1, 2, 3, 4, 5, 6]
>>> random.choice(alist)
5
>>> random.choice(alist)
3
>>> random.choice(alist)
1

random.choices(population, weights=None, *, cum_weights=None, k=1) – позволяет выбрать k элементов из population. Выбранные элементы могут повторяться. Можно задать веса каждого элемента через weight, или кумулятивные веса через cum_weights. Веса определяют вероятность соответствующего элемента быть выбранным. Если мы не задали никакие веса, то любой элемент считается равновероятным. Кумулятивные веса – это значит, каждый следующий вес является суммой предыдущего и некоторой добавки, которая и есть вес соответствующего элемента. Пример: weights=[10, 5, 30, 5] эквивалентно cum_weights=[10, 15, 45, 50], причем последний вариант предпочтительнее, так как с кумулятивными весами функция работает быстрее.

>>> random.choices([1, 2, 3], k=10)
[1, 3, 1, 1, 2, 2, 1, 3, 3, 1]

📎 Пример. Выбор с весами (80% шанс получить 1, 15% для 2 и 5% для 3):

>>> random.choices([1, 2, 3], k=10, weights=[80, 15, 5])
[1, 1, 1, 1, 2, 1, 3, 1, 1, 1]

📎 Пример. Генерация случайной строки:

>>> import string
>>> ''.join(random.choices(string.ascii_letters, k=10))
'ncNAzTldvg'

random.shuffle(x) – перемешивает саму последовательность x, ничего не возвращает.

>>> x = [10, 20, 30, 40]
>>> random.shuffle(x)
>>> x
[10, 40, 20, 30]
>>> random.shuffle(x)
>>> x
[20, 30, 10, 40]

Если последовательность неизменяема (например, кортеж), то используйте random.sample(x, k=len(x)), которая вернет перемешанный список, не трогая исходную последовательность.

>>> random.sample(x, k=len(x))
[40, 30, 10, 20]

random.random() – случайное вещественное число от 0.0 до 1.0, не включая 1.0, т.е. в диапазоне [0, 1). Равновероятное распределение.

>>> random.random()
0.8505907349159074
>>> random.random()
0.49760476981102786

random.uniform(a, b) – случайное вещественное число на промежутке [a, b], равноверотяно.

>>> random.uniform(5, 7)
6.812839982463059
>>> random.uniform(5, 7)
6.564395491702289
>>> random.uniform(5, 7)
5.875898672403455

random.gauss(mu, sigma) и random.normalvariate(mu, sigma) нормальные распределения с медианой μ и с среднеквадратичным отклонением σ .

Нормальные распределения

random.triangular(low, high, mode) – треугольное разпределние от low до high с модой mode ∈ [low, high].

Треугольные распределения

random.betavariate(alpha, beta)бета-распределение.

Бета-распределения

random.expovariate(lambd)экспоненциальное распределение.

random.gammavariate(alpha, beta)гамма-распределение (не путать с гамма-функцией).

Гамма-распределения

random.lognormvariate(mu, sigma)логнормальное распределение. Если случайная величина имеет логнормальное распределение, то её логарифм имеет нормальное распределение.

Логнормальные распределения

random.vonmisesvariate(mu, kappa) – распределение вон Мизеса (также известное как круглое нормальное распределение или распределение Тихонова) является непрерывным распределением вероятности на круге.

Распределения вон Мизеса

random.paretovariate(alpha)распределение Парето.

Распределения Парето

random.weibullvariate(alpha, beta)распеделение Вейбулла.

Распределения Вейбулла

Внутри модуля random скрывается класс Random. Можно создавать экземпляры этого класса, которые не будут делить состояние с остальными функциями random. Этот класс содержит методы с аналогичными названиями, что и функции модуля:

>>> my_random = random.Random(42)
>>> my_random.normalvariate(1, 2.5)
1.6133158542696586
>>> my_random.random()
0.27502931836911926
>>> my_random.choice([1, 2, 3])
1

Класс Random пригодится вам, если нужна гарантированная воспроизводимость случайных чисел, ведь из этого ГСЧ только вы берете случайные числа, и никакая более часть программы не нарушит эту последовательность.

Класс random.SystemRandom() – альтернативные класс для случайных чисел, который берет случайные числа не из встроенного алгоритма, а из системного os.urandom, о котором будет рассказано в конце статьи.

Случайные числа в библиотеке NumPy

ГСЧ из NumPy пригодится на случай необходимости генерации случайных многомерных массивов.

numpy.random.seed(n) – задать seed для ГСЧ.

rand(d0, d1, …, dn) – многомерный массив случайных вещественных чисел в диапазоне [0, 1). Размерности указываются через запятую.

>>> import numpy as np
>>> np.random.rand(3, 2)
array([[0.10249247, 0.21503386],
       [0.40189789, 0.23972727],
       [0.28861301, 0.12995166]])

randn(d0, d1, …, dn) – тоже, что и rand, но случайные числа будут распределены нормально вокруг 0 со СКО = 1.

>>> np.random.randn(3, 2)
array([[ 1.13506644,  1.1115104 ],
       [-0.43613352, -0.03630799],
       [ 0.69787228,  1.24875159]])

randint(low[, high, size, dtype]) – случайные целые числа в диапазоне [low, high) в многомерном массиве размера size (целое число или кортеж размерностей).

>>> np.random.randint(10, 20, 5)
array([18, 18, 10, 19, 15])
>>> np.random.randint(10, 20, (3, 2))
array([[10, 13],
       [12, 14],
       [19, 14]])

random_integers(low[, high, size]) – случайные целые числа в диапазоне [low, high] в многомерном массиве размера size (целое число или кортеж размерностей).

>>> np.random.random_integers(10, 20, (3, 2))
array([[10, 20],
       [16, 14],
       [12, 18]])

randint никогда не возвращает верхнюю границу диапазона (high), random_integers – может вернуть и high.

random_sample([size]), random([size]), ranf([size]), sample([size]) – эти четыре функции называются по-разному, но делают одно и тоже. Возвращают многомерный массив случайных вещественных чисел в диапазоне [0, 1). Размерности указываются числом для 1D массива или кортежем для массива большего ранга.

>>> np.random.ranf(3)
array([0.60612404, 0.04881742, 0.17121467])
>>> np.random.sample(4)
array([0.71248954, 0.8613707 , 0.72469335, 0.62528553])
>>> np.random.random_sample((3, 4))
array([[0.39140157, 0.17538846, 0.55895275, 0.58363394],
       [0.52779193, 0.90067421, 0.63571978, 0.62386877],
       [0.52287003, 0.49077399, 0.57247767, 0.15221763]])

numpy.random.choice(a, size=None, replace=True, p=None) – случайно выбирает из 1D массива один и несколько элементов.

a – одномерный массив или число. Если вместо массива – число, то оно будет преобразовано в np.arange(a).

size – размерность возвращаемой величины. По умолчанию size=None, дает один единственный элемент, если size – целое число, то вернется 1D-массив, если size — кортеж, то вернется массив размерностей из этого кортежа.

replace – допускается ли повтор элементов, т.е. «возвращаем ли мы выбранный шар обратно в корзину». По умолчанию – да. Если мы запретим возврат, то мы не сможем извлечь больше элементов, чем есть в исходном массиве.

p – массив вероятностей для каждого элемента быть выбранным. Если не задано, распределение вероятностей равномерно.

📎 Пример. Допуская повторы:

>>> np.random.choice([1, 2, 3, 4], 3)
array([1, 3, 3])

📎 Пример. Не допуская повторы:

>>> np.random.choice([1, 2, 3, 4], 3, replace=False)
array([1, 3, 4])

📎 Пример. Задаем вероятности:

>>> np.random.choice([1, 2, 3, 4], 4, p=[0.1, 0.7, 0.0, 0.2])
array([2, 2, 1, 2])

📎 Пример. Выбор строк:

>>> np.random.choice(["foo", "bar", "dub"])
'dub'
>>> np.random.choice(["foo", "bar", "dub"], size=[2, 2])
array([['bar', 'bar'],
       ['bar', 'dub']], dtype='<U3')

bytes(length) – возвращает length случайных байт.

>>> np.random.bytes(10)
b'\x19~\xd0w\xc2\xb6\xe5M\xb1R'

shuffle(x) и permutation(x) – перемешивают последовательность x. shuffle модифицирует исходную последовательность, а permutation – возвращает новую перемешанную последовательность, не трогая исходную.

>>> x = np.arange(10)
>>> x
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

>>> np.random.shuffle(x)
>>> x
array([8, 6, 0, 3, 1, 2, 4, 9, 7, 5])

>>> y = np.random.permutation(x)
>>> y
array([4, 8, 7, 5, 9, 3, 6, 0, 2, 1])

>>> x
array([8, 6, 0, 3, 1, 2, 4, 9, 7, 5])

Также в NumPy имеется еще более богатый выбор различных распределений случайных величин, чем у обычного random. Не будет подробно останавливаться на каждой функции, так как это уже больше статистика, чем программирование. Из названия функций легко понять, какое распределение они представляют. Главная особенность, что у каждый из этих функций есть аргумент size – кортеж размерностей возвращаемого многомерного массива или целое число, если нужен одномерный массив:

  • beta(a, b[, size])
  • binomial(n, p[, size])
  • chisquare(df[, size])
  • dirichlet(alpha[, size])
  • exponential([scale, size])
  • f(dfnum, dfden[, size])
  • gamma(shape[, scale, size])
  • geometric(p[, size])
  • gumbel([loc, scale, size])
  • hypergeometric(ngood, nbad, nsample[, size])
  • laplace([loc, scale, size])
  • logistic([loc, scale, size])
  • lognormal([mean, sigma, size])
  • logseries(p[, size])
  • multinomial(n, pvals[, size])
  • multivariate_normal(mean, cov[, size, …)
  • negative_binomial(n, p[, size])
  • noncentral_chisquare(df, nonc[, size])
  • noncentral_f(dfnum, dfden, nonc[, size])
  • normal([loc, scale, size])
  • pareto(a[, size])
  • poisson([lam, size])
  • power(a[, size])
  • rayleigh([scale, size])
  • standard_cauchy([size])
  • standard_exponential([size])
  • standard_gamma(shape[, size])
  • standard_normal([size])
  • standard_t(df[, size])
  • triangular(left, mode, right[, size])
  • uniform([low, high, size])
  • vonmises(mu, kappa[, size])
  • wald(mean, scale[, size])
  • weibull(a[, size])
  • zipf(a[, size])

📎 Пример. Генерация двух коррелирующих временных рядов из двумерного нормального распределения (multivariate_normal):

import numpy as np
import matplotlib.pyplot as plt


def corr2cov(p: np.ndarray, s: np.ndarray) -> np.ndarray:
    """Ковариационная матрица от корреляции и стандартных отклонений"""
    d = np.diag(s)
    return d @ p @ d


# Начало с корреляционной матрицы и стандартных отклонений
# 0.9 это корреляция между А и B, а корреляция
# самой переменной равна 1.0
corr = np.array([[1., 0.9],
                [0.9, 1.]])

stdev = np.array([3., 1.])
mean = np.array([5., -5.])
cov = corr2cov(corr, stdev)

# `size` это длина временных рядов для 2д данных
data = np.random.multivariate_normal(mean=mean, cov=cov, size=5000)

x, y = data.T

f, (ax1, ax2) = plt.subplots(1, 2)

ax1.plot(x, y, 'x')

ax2.plot(x[:100])
ax2.plot(y[:100])
plt.show()
Коррелирующие временные ряды

Криптографически безопасный ГСЧ

Криптографически безопасный ГСЧ (КБГСЧ) – по-прежнему псевдослучайный и детерминированный генератор, однако он использует широкий набор источников энтропии в системе. Энтропия – мера неопределенности, хаотичности системы. Случайности могут быть получены из

  • Различных системных идентификаторов
  • Времен возникновения разных системных событий в ядре и драйверах
  • Движения мыши, нажатия клавиш и т.п.
  • Аппаратный ГСЧ, например встроенный в процессоры Intel Ivy Bridge.

КБГСЧ в Python базируется на функции os.urandom(), которая в свою очередь использует:

  • Чтение из /dev/urandom на Unix-like системах.
  • CryptGenRandom() функцию на Windows.

Для os.urandom нет понятия seed. Последовательность случайных байт не должна быть воспроизводима. Аргумент функции – число случайных байт.

📎 Пример.

>>> import os
>>> x = os.urandom(10)

# объект типа bytes
>>> x  
b'\xf0\xba\xf8\x86\xb6\xc4Aa*\xe7'

# тоже самое как 16-ричная строка
>>> x.hex()  
'f0baf886b6c441612ae7'

# тоже самое как список чисел
>>> list(x)   
[240, 186, 248, 134, 182, 196, 65, 97, 42, 231]

В стандартной библиотеке Python несколько модулей используют функцию os.urandom:

  • random.SystemRandom() – все функции обычного Random, но источник случайностей – os.urandom
  • модуль secrets – удобства для генерации случайных токенов, ключей и т.п.
  • uuid – генерация токенов по стандарту UUID (Universally Unique IDentifier)

Модуль secrets

По сути – обертка над os.urandom.

  1. secrets.token_bytes – тоже самое, что и os.urandom (по умолчанию, если размер не указан дает 32 байта).
  2. secrets.token_hex – тоже самое, только возвращает 16-ричную строку.
  3. secrets.token_urlsafe – случайная строка, пригодная для URL адресов.
  4. secrets.choice – безопасная версия random.choice

📎 Пример. Укоротитель ссылок:

from secrets import token_urlsafe

DATABASE = {}


def shorten(url: str, nbytes: int = 5) -> str:
    token = token_urlsafe(nbytes=nbytes)
    if token in DATABASE:
        # если уже есть такая ссылка – генерируем еще одну рекурсивно
        return shorten(url, nbytes=nbytes)
    else:
        DATABASE[token] = url
        return 'https://bit.ly/' + token


print(shorten('https://google.com'))
print(shorten('https://yandex.ru'))

# https://bit.ly/vZ1VZug
# https://bit.ly/x966uWI

Ссылки в примеры получились длиннее (7 символов), чем мы просили (5 байт). Это объясняется тем, что внутри token_urlsafe использует кодировку base64, где каждый символ представляет 6 бит данных; чтобы закодировать 5 * 8 = 40 бит, понадобилось как минимум 7 6-битных символов (7 * 6 = 42 бита).

Модуль uuid

UUID (Universally Unique IDentifier) – универсальный уникальный идентификатор, уникальность которого «гарантирована» в пространстве и времени. Имеет длину 128 бит (16 байт). Наиболее интересен для нас вариант uuid4, так как он использует случайность из os.random.

>>> uuid.uuid4()
UUID('cd955a9e-445d-47de-95e2-3d8de8c61696')

>>> u = uuid.uuid4()
>>> u
UUID('7dfb1170-af20-4218-9b76-bc4d7ae6a309')

>>> u.hex
'7dfb1170af2042189b76bc4d7ae6a309'

>>> u.bytes
b'}\xfb\x11p\xaf B\x18\x9bv\xbcMz\xe6\xa3\t' 

>>> len(u.bytes)
16

Вероятность коллизии (вероятность получить два одинаковых uuid4) крайне мала. Если бы мы каждую секунду генерировали по одному миллиарду uuid, то через 100 лет едва ли обнаружился хоть один дубликат.

Производительность

Резонный вопрос: почему бы не использовать random.SystemRandom() (или os.urandom) везде, где можно?
Оказывается, есть существенное препятствие. Пул энтропии КБГСЧ ограничен. Если он исчерпан, то придется подождать, пока он заполнится вновь. Проведем небольшой бенчмарк на пропускную способность генераторов случайных чисел:

import random
import timeit

r_secure = random.SystemRandom()
r_common = random.Random()
n_bits = 1024


def prng():
    r_common.getrandbits(n_bits)


def csprng():
    r_secure.getrandbits(n_bits)


setup = 'import random; from __main__ import prng, csprng'

if __name__ == '__main__':
    number = 50000
    repeat = 10
    data_size_mb_bytes = number * repeat * n_bits / (8 * 1024**2)
    for f in ('prng()', 'csprng()'):
        best_time = min(timeit.repeat(f, setup=setup, number=number, repeat=repeat))
        speed = data_size_mb_bytes / best_time
        print('{:10s} {:0.2f} mb/sec random throughput.'.format(f, speed))

Результаты:

prng() 1794.74 mb/sec random throughput.
csprng() 94.13 mb/sec random throughput.

Почти в 20 раз обычный ГСЧ быстрее, чем КБГСЧ.

Вывод: нужна безопасность – обязательно используем secrets, random.SystemRandom, uuid.uuid4 или просто os.urandom, а если нужно много и быстро генерировать неконфиденциальные случайные данные – random и numpy.random.

Специально для канала @pyway.

⛓ Цепочки сравнений

Распространенная ситуация: проверка того, что переменная находится в заданных пределах. Можно было бы использовать логический оператор and:

if x >= 5 and x < 20:

Однако Python предоставляет нам синтаксическое удобство, которое выглядит более «математичным». Такая запись и короче, и понятнее:

if 5 <= x < 20:

В качестве операторов сравнения могут быть любые из списка в любых сочетаниях:

">", "<", "==", ">=", "<=", "!=", "is" ["not"], ["not"] "in"

Т.е. запись вида a < b > c вполне законна, хоть и трудна для понимания.

Формально, если мы имеем N операций OP1…OPN и N + 1 выражений (a, b … y, z), то запись вида:

a OP1 b OP2 c … y OPN z 

Это эквивалентно записи:

a OP1 b and b OP2 c and … and y OPN z

📎 Примеры:

x = 5
print(1 < x < 10)
print(x < 10 < x*10 < 100)
print(10 > x <= 9)
print(5 == x > 4)
a, b, c, d, e, f = 0, 5, 12, 0, 15, 15
print(a <= b < c > d is not e is f)

Специально для канала @pyway.

Итераторы и генераторы

В чем разница между итератором и генератором? Этот вопрос можно часто услышать на собеседованиях.

Итератор – более общая концепция, чем генератор.

Итератор – это интерфейс доступа к элементам коллекций и потоков данных. Он требует реализации единственного метода – «дай мне следующий элемент». Если вы пишите свой итератор на Python 3 вам нужно реализовать в классе метод __next__. Если элементы исчерпаны итератор возбудит исключение StopIteration.

📎 Пример. Итератор счетчик – выдает числа от low до high:

class Counter:
    def __init__(self, low, high):
        self.current = low
        self.high = high
    def __iter__(self):
        return self
    def __next__(self): 
        if self.current > self.high:
            raise StopIteration
        else:
            self.current += 1
            return self.current - 1

Генератор – это итератор

Генератор – это итератор, но не наоборот. Не любой итератор является генератором.

Есть два способа получить генератор:

📎 1. Генераторное выражение (что-то типа list comprehension, но возвращает генератор, а не список). Используются круглые скобки:

>>> g = (2 * i for i in range(5))
>>> type(g)
<class 'generator'>
>>> next(g)
0
>>> next(g)
2

📎 2. Генераторные функции. Это функции, где есть хотя бы одно выражение yield. Когда мы запускаем генератор, функция выполняет до первого выражения yield. То, что мы передали в yield будет возвращено наружу. Генератор при этом встанет «на паузу» до следующей итерации. При следующей итерации выполнение генератора продолжится до очередного yield.

Генераторы можно прочитать только 1 раз, потому что обычно генераторы не хранят значения в памяти, а генерируют их налету (отсюда и название).

Пример. Генератор чисел Фибоначчи (бесконечный):

def fib():
    a, b = 0, 1
    while 1:
        yield a
        a, b = b, a + b

>>> fib_g = fib()
>>> next(fib_g)
0
>>> next(fib_g)
1
>>> next(fib_g)
1
>>> next(fib_g)
2
>>> next(fib_g)
3
>>> next(fib_g)
5

Вызвав генераторную функцию fib() мы получили генератор. Затем мы итерируем этот генератор функцией next().

Остановка генератора

Если генератор «закончился» (т.е. просто вышли из функции генератора в конце его кода или по return), то автоматически возбуждается исключение StopIteration. Это не ошибка, это нормально, просто принятый способ обработки конца итератора.

def gen():
    yield 1
    yield 5
    # и все, код кончился, вышли
    
for x in gen():
    print(x) # 1, 5

for in сам ловит исключение StopIteration и просто завершает итерировать этот генератор.

Передача данных в генератор

У генераторов есть дополнительные методы, которые позволяют передавать внутрь генератора данные или возбуждать внутри него исключения. Это еще одно отличие от простых итераторов.

send() – отправить данные в генератор. Переданное значение вернется из той конструкции yield, на которой возникла последняя пауза генератора. При этом генератор будет прокручен на один шаг, как если бы мы вызвали next:

val = yield i  # генератор вернет i, но внутри получит val из аргумента метода send

Пример. Этот генератор просто выдает числа от 0 и далее, при этом печатает в поток вывода все, что мы ему отправляем.

def my_gen():
    i = 0
    while True:
        val = yield i
        print('Got inside generator:', val)
        i += 1

>>> g = my_gen()
>>> next(g)
0
>>> g.send("hello")
Got inside generator: hello
1
>>> g.send("world")
Got inside generator: world
2

Обратите внимание, что первый раз нельзя посылать в генератор данные, пока мы не прокрутили его до первого yield. Нужно либо взывать next(g) или g.send(None) – это одно и тоже.

Не будет ошибкой отправлять данные генератору, который не получает их (нет использования значения конструкции yield). Например, нашему генератору fib() можно отравить все, что угодно, он просто проигнорирует.

throw() – бросить исключение внутри генератора. Исключение будет возбуждено из того выражение yield, где генератор последний раз остановился.

>>> g = my_gen()   # my_gen из прошлого примера

>>> g.throw(TypeError, 'my error')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 1, in my_gen
TypeError: my error

close() – закрыть генератор. Бросает внутри генератора особое исключение GeneratorExit. Это исключение, даже если оно не обработано, не распространится в код, вызвавший close(). Но, если мы поймали это исключение внутри генератора, то после закрытия генератора нельзя уже делать yield, рискуя получить RuntimeError. Остальные виды исключений будут распространяться из генератора в код, его вызывающий. Попытка итерировать закрытый итератор приведет к исключению StopIteration (закрытый генератор – пустой итератор).

>>> g = my_gen()
>>> next(g)
0
>>> next(g)
Got inside generator: None
1
>>> g.close()
>>> next(g)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

Бонус

Как взять из итератора (в том числе из генератора) N первых значений?

Можно, конечно, написать свою функцию. Но зачем, если она уже есть в стандартном модуле itertools. Этот модуль содержит множество вспомогательных функций для работы с итераторами. Нам понадобится itertools.islice. Первый аргумент – итератор (ну или генератор), остальные три – как в range.

>>> list(itertools.islice(fib(), 10))
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

>>> list(itertools.islice(fib(), 10, 20, 2))
[55, 144, 377, 987, 2584]

В первом примере мы передаем в функцию itertools.islice наш генератор чисел Фибоначчи и число чисел, которые надо вычислить (в нашем случае – 10).

Мы также применяем функцию list, чтобы посмотреть список значений, потому что itertools.islice возвращает не спикок, а именно новый итератор, в котором будут только интересные нам значений из исходного итератора.

Во втором примеры аргументов 4 штуки. В этом случае второй аргумент – начальный номер = 10, третий – конечный номер = 20 – (не включительно), и четвертый – шаг = 2. (Очень похоже на range, не так ли?)

Специально для канала @pyway.