Метка: python

Удаление ключа из словаря

Выдирает страницу из словаря

Словарь (dict) – изменяемый тип в Python. Из словаря можно легко удалить ключ оператором del:

>>> d = {"foo":123, "bar":321}
>>> del d["foo"]
>>> d
{'bar': 321}

Что если ключа не окажется в словаре? Ответ: исключение – KeyError:

>>> del d['baz']
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
KeyError: 'baz'

Конечно, можно сделать так:

if 'baz' in d:
    del d['baz']

Или даже так:

try:
    del d['baz']
except KeyError:
    pass

Однако, есть способ удалить ключ (которого возможно нет) в одну строчку:

d.pop('baz', None)

Обратите внимание, что второй аргумент None обязателен. Кроме того, метод pop вернет удаленный элемент, что может быть полезно в каких-то случаях.

🧙 Специально для канала @pyway. Подписывайтесь на мой канал в Телеграм @pyway 👈 

Что быстрее? dict() или {}

Разработчики предпочитают разные способы создания пустого словаря. Но равнозначны ли они?

Оказывается, что нет. Они приводят к генерации разного байт-кода. Убедимся в этом с помощью модуля dis:

 >>> import dis
 >>> dis.dis('{}')
   1           0 BUILD_MAP                0
               2 RETURN_VALUE
 >>> dis.dis('dict()')
   1           0 LOAD_NAME                0 (dict)
               2 CALL_FUNCTION            0
               4 RETURN_VALUE 

В одном случае непосредственно используется одна команда BUILD_MAP для создания словаря, а в другом случае идет вызов функции dict, который где-то внутри себя делает BUILD_MAP.

Очевидно, это сказывается и на времени выполнения кода:

>>> from timeit import timeit
>>> timeit('{}')
0.03544308300479315
>>> timeit('dict()')
0.08697152900276706

Вывод: dict() – работает значительно медленнее. Не призываем переписывать старый код, просто на заметку.

🧙 Специально для канала @pyway. Подписывайтесь на мой канал в Телеграм @pyway 👈 

Слабые ссылки

Недавно в заметке про управление памятью в Python мы упоминали слабые ссылки. По опросу на моем канале лишь 1 человек из 4 знал про слабые ссылки в Python, и лишь 6% читателей их применяли. Что же это такое? Слабые ссылки позволяют получать доступ к объекту, как и обычные, однако, так сказать, они не учитываются в механизме подсчета ссылок. Другими словами, слабые ссылки не могут поддерживать объект живым, если на него не осталось больше сильных ссылок.

Согласно документации, слабые ссылки нужны для организации кэшей и хэш-таблиц из «тяжелых» объектов, когда не требуется поддерживать объект живым только силами этого самого кэша; чтобы в долгоживущей программе не кончалась память из-за хранения в кэшах большого количества уже не нужных объектов.

Встроенный модуль weakref отвечает за функциональность слабых ссылок.

📎 Пример. Создаем класс Foo, сильную ссылку на его экземпляр, затем слабую ссылку, проверяем:

import weakref

class Foo: ...

strong_foo = Foo()
weak_foo = weakref.ref(strong_foo)
print(weak_foo())   # вызов слабой ссылки - доступ к исходному объекту
print(weak_foo() is strong_foo)  # True

del strong_foo  # это была последняя сильная ссылка
print(weak_foo())  # None

После того, как мы избавились от единственной сильной ссылки на экземпляр класса, объект уничтожился, а слабая ссылка стала None!

Слабые ссылки можно создавать на пользовательские классы, на set и на подклассы от dict и list, но не на сами dict и list. Встроенные типы tuple, int и подобные не поддерживают слабые ссылки (да и зачем они им?).  

В weakref.ref вторым аргументом можно передать функцию, которая будет вызвана при финализации объекта слабой ссылки:

weak_foo = weakref.ref(strong_foo, lambda r: print(f'finalizing {r}'))

weakref.getweakrefcount(object) и weakref.getweakrefs(object) позволяют получить количество слабых ссылок на объект и их сами.

weakref.proxy(object[, callback]) – создает слабый прокси-объект к объекту. Т.е. с ним можно обращаться также как и исходным, пока он не удалится. Попытка использовать прокси к уничтоженному объекту вызовет ReferenceError.

Наконец, к предназначению слабых ссылок: организацию кэшей. Есть типы:

weakref.WeakSet – как set, но элементы хранятся по слабым ссылкам и удаляются, если на них больше нет сильных ссылок

weakref.WeakKeyDictionary – как dict, но КЛЮЧИ по слабым ссылкам.

weakref.WeakValueDictionary – как dict, но ЗНАЧЕНИЯ по слабым ссылкам.

📎 Пример:

import weakref

class Foo: ...
f1, f2 = Foo(), Foo()

weak_dict = weakref.WeakValueDictionary()
weak_dict["f1"] = f1
weak_dict["f2"] = f2

def print_weak_dict(wd):
    print('weak_dict: ', *wd.items())

print_weak_dict(weak_dict)  # оба в словаре

del f2
print_weak_dict(weak_dict)  # один ушел

del f1
print_weak_dict(weak_dict)  # ничего не осталось

📎 Наконец, можно следить за тем, когда объект будет удален:

f = Foo()
# просто установим обработчик (finalize сам никого не удаляет)
weakref.finalize(f, print, "object dead or program exit")
del f  # а вот тут print вызовется

Специально для канала @pyway. Подписывайтесь на мой канал в Телеграм @pyway!

Визуализация графа ссылок

В продолжение вчерашней темы, покажу, как можно визуализировать граф ссылок объектов в Python. Возможно, кому-то это поможет решить сложные моменты с использованием памяти и с организацией нетривиальных структур данных.

0) Для рисования графов понадобится graphviz Например, на MacOS вы можете установить его через Homebrew:

brew install graphviz

1) Установим библиотеку objgraph:

pip install objgraph

2) Использование. Пусть у нас есть такая структура данных:

x = ["test"]
x.append(x)
y = [x, [x], dict(x=x), set([1, 2, "test"])]

Сохраняем граф ссылок на объекты, на которые ссылается y в файл ‘1.png’. Обратите внимание, что show_refs принимает именно список [y], а не просто y:

import objgraph
objgraph.show_refs([y], filename='1.png')

Можно для каждого объекта вывести общее число ссылок на него:

objgraph.show_refs([y], refcounts=True, filename='2.png')
Пример вывода objgraph

А можно узнать, кто наоборот ссылается на интересующий объект x, т.е. отследить цепочку ссылок до глобальных объектов:

objgraph.show_backrefs([x], filename='3-back.png')

Узнать статистику по самым распространенным объектам в текущей среде:

>>> objgraph.show_most_common_types(limit=5)
function           2127
dict               1193
wrapper_descriptor 1002
tuple              954
weakref            868

Или по конкретному типу глобально:

>>> objgraph.count('dict')
1195

Или среди конкретного списка объектов:

>>> objgraph.count('dict', [{'x':5}, {'y':6}])
2

В библиотеке еще много функций для отслеживания ссылок и статистик по объектам, но всего этого не вместить в небольшую заметку.

👉 Общая документация по objgraph 

👉 Список функций objgraph

👨‍🎓Специально для канала @pyway. Подписывайтесь на мой канал в Телеграм @pyway! 👈

Управление памятью и сборка мусора в Python

КДПВ: Дети сортируют мусор

В принципе Python спроектирован так, чтобы почти не заботиться об управлении памятью. Однако знание того, как все устроено, помогает писать более качественный код и избегать всяческих экзотических фиаско при выполнении вашего кода… и помогает проходить успешно собеседования.

Здесь я изложу основные тезисы об управлении памятью в Python (CPython). 

• В Python память управляется автоматически.

• Память для объектов, которые уже не нужны освобождается сборщиком мусора.

• Для небольших объектов (< 512 байт) Python выделяет и освобождает память блоками (в блоке может быть несколько объектов). Почему: операции с блоками памятью через ОС довольно долгие, а мелких объектов обычно много, и, таким образом, системные вызовы совершаются не так часто.

• Есть два алгоритма сборки мусора: подсчет ссылок (reference counting) и сборщик на основе поколений (generational garbage collectorgc).

• Алгоритм подсчета ссылок очень простой и эффективный, но у него есть один большой недостаток (помимо многих мелких). Он не умеет определять циклические ссылки

• Циклическими ссылками занимается gc, о ним чуть позже.

• Переменные хранят ссылки на объекты в памяти, внутри объект хранит числовое поле – количество ссылок на него (несколько переменных могут ссылаться на один объект)

• Количество ссылок увеличивается при присвоении, передаче аргументов в функцию, вставке объекта в список и т.п.

• Если число ссылок достигло 0, то объект сразу удаляется (это плюс).

• Если при удалении объект содержал ссылки на другие объекты, то и те могут удалиться, если это были последние ссылки.

• Переменные, объявленные вне функций, классов, блоков – глобальные.

• Глобальные переменные живут до конца процесса Python, счетчик их ссылок никогда не падает до нуля.

• При выходе из блока кода, ссылки созданные локальными переменными области видимости этого блока – уничтожаются.

• Функция sys.getrefcount позволит узнать число ссылок на объект (правда она накинет единицу, т.к. ее аргумент — тоже ссылка на тестируемый объект):

>>> foo = []
>>> import sys
>>> sys.getrefcount(foo)
2
>>> def bar(a): print(sys.getrefcount(a))
...
>>> bar(foo)
4
>>> sys.getrefcount(foo)
2

• Подсчет ссылок в CPython — исторически. Вокруг него много дебатов. В частности наличие GIL многим обязано этому алгоритму. 

• Пример создания циклической ссылки – добавим список в себя:

lst = []
lst.append(lst) 

• Цикличные ссылки обычно возникают в задачах на графы или структуры данных с отношениями между собой.

• Цикличные ссылки могут происходить только в “контейнерных” объектах (списки, словари, …).

• GC запускается переодически по особым условиям; запуск GC создает микропаузы в работе кода.

• GC разделяет все объекты на 3 поколения. Новые объекты попадают в первое поколение. 

• Как правило, большинство объектов живет недолго (пример: локальные переменные в функции). Поэтому сборка мусора в первом поколении выполняется чаще.

• Если новый объект выживает процесс сборки мусора, то он перемещается в следующее поколение. Чем выше поколение, тем реже оно сканируется на мусор. 

• Во время сборки мусора объекты поколения, где он собирается, сканируются на наличие циклических ссылок; если никаких ссылок, кроме циклических нет — то объекты удаляются.

• Можно использовать инструменты из модуля weakref для создания слабых ссылок. 

• Слабые ссылки не учитываются при подсчете ссылок. Если объект, на который ссылается слабая ссылка, удалится, то слабая ссылка просто обнулится, станет пустышкой.

• Подсчет ссылок не может быть отключен, а gc — может.

• В некоторых случаях полезно отключить автоматическую сборку gc.disable() и вызывать его вручную gc.collect().

Специально для канала @pyway.