Метка: секреты

​​Размер окна терминала

Для оформления информации в терминале часто нужно знать размеры окна терминала (количество колонок и строк). Во встроенном модуле shutil можно найти функцию get_terminal_size, которая возвращает именованный кортеж:

>>> shutil.get_terminal_size()
os.terminal_size(columns=208, lines=25)

Или

>>> cols, lines = shutil.get_terminal_size()
>>> cols, lines
(208, 25)

Или

>>> tsz = shutil.get_terminal_size()
>>> tsz.columns, tsz.lines
(208, 25)
Текст с разделителями их дефисов

Например, сделаем разделитель с заголовком, как на фото.

1. Будем форматировать по центру значение в строку с заданной длинной, а пустые места заполнить каким-то символом. Для этого нужен особый формат:

>>> '{:^10}'.format('love')
'   love   '
>>> '{:-^10}'.format('life')
'---life---'

Знак после двоеточия – заполнитель (если его нет, то пробел); а число после крышечки – желаемая ширина строки. Крышечка указывает, что форматирование будет по центру.

2. Так как число неизвестно заранее, то его тоже надо вставить с помощью format, предварительно экранировав фигурные скобки (двойная фигурная скобка в формате воспринимается как соотвествующий символ, а не как место для подстановки):

>>> '{{:-^{}}}'.format(10)
'{:-^10}'
>>> '{{:-^{}}}'.format(10).format('love')
'---love---'
>>> '{{:-^{}}}'.format(shutil.get_terminal_size().columns).format('love')
'---------------------------love----------------------------'

3. Текст, что по центру сделаем заглавным, а также каждый символ отделим пробелами, чтобы заголовок казался заметнее:

>>> ' '.join('love'.upper())
'L O V E'
>>> ' ' + ' '.join('love'.upper()) + ' '
' L O V E '

4. Соеденим все вместе в однострочник, добавив print к итоговой строке:

def sep(s): 
    print('{{:-^{}}}'.format(shutil.get_terminal_size().columns).format(' ' + ' '.join(str(s).upper()) + ' '))

Хочу уточнить, что shutil.get_terminal_size() не всегда способна определить размер терминала. Например, когда собственно и нет никакого окна терминала, а лишь есть поток вывода как при выводе в файл или в канал. У потока вывода нет таких характеристик как размер окна. При выполнении функции в среде PyCharm функция вернет размер по умолчанию (80 на 25), и разделитель будет не на всю ширину области вывода, если она шире 80 символов.

😈 Специально для канала @pyway. Подписывайтесь на мой канал в Телеграм @pyway 👈 

🔐 Храним секреты правильно

Наверное, каждый когда-то писал в своем коде:

DB_HOST = 'localhost'
DB_USER = 'root'
DB_PASSWORD = 'l33thAxor666'

Это небезопасно и неудобно. Можно утащить доступы прямо из кода с машины или из репозитория. Можно хранить секретные данные в отдельных файлах конфигурации, передавать через переменные среды, но зачем это, если у современных ОС уже есть встроенные защищенные хранилища.

Для хранения секретов и паролей придет на помощь библиотека keyring.

В зависимости от ОС и среды она использует:
• macOS Keychain
• Freedesktop Secret Service
• KDE4 & KDE5 KWallet
• Windows Credential Locker
• и другие бэкенды…

Мы храним в скрипте или конфиге только название системы и логин (можете использовать произвольные):

>>> import keyring
>>> keyring.set_password("my_system", "my_username", "password")
>>> keyring.get_password("my_system", "my_username")
'password'

Другие пользователи системы не смогут прочитать эти данные. Но от вашего имени можно получить доступ к ним даже из терминала:

$ keyring set my_system my_username
Password for 'my_username' in 'my_system':
$ keyring get my_system my_username
qwerty

Считать пароль безопасно с клавиатуры можно с помощью модуля getpass (он строен в Python). Вводимые символы не будут видны на экране:

>>> import getpass
>>> password = getpass.getpass(prompt="Enter super password:")
Enter super password:
>>> password
'qwerty'

Специально для канала @pyway.

Итераторы и генераторы

В чем разница между итератором и генератором? Этот вопрос можно часто услышать на собеседованиях.

Итератор – более общая концепция, чем генератор.

Итератор – это интерфейс доступа к элементам коллекций и потоков данных. Он требует реализации единственного метода – «дай мне следующий элемент». Если вы пишите свой итератор на Python 3 вам нужно реализовать в классе метод __next__. Если элементы исчерпаны итератор возбудит исключение StopIteration.

📎 Пример. Итератор счетчик – выдает числа от low до high:

class Counter:
    def __init__(self, low, high):
        self.current = low
        self.high = high
    def __iter__(self):
        return self
    def __next__(self): 
        if self.current > self.high:
            raise StopIteration
        else:
            self.current += 1
            return self.current - 1

Генератор – это итератор

Генератор – это итератор, но не наоборот. Не любой итератор является генератором.

Есть два способа получить генератор:

📎 1. Генераторное выражение (что-то типа list comprehension, но возвращает генератор, а не список). Используются круглые скобки:

>>> g = (2 * i for i in range(5))
>>> type(g)
<class 'generator'>
>>> next(g)
0
>>> next(g)
2

📎 2. Генераторные функции. Это функции, где есть хотя бы одно выражение yield. Когда мы запускаем генератор, функция выполняет до первого выражения yield. То, что мы передали в yield будет возвращено наружу. Генератор при этом встанет «на паузу» до следующей итерации. При следующей итерации выполнение генератора продолжится до очередного yield.

Генераторы можно прочитать только 1 раз, потому что обычно генераторы не хранят значения в памяти, а генерируют их налету (отсюда и название).

Пример. Генератор чисел Фибоначчи (бесконечный):

def fib():
    a, b = 0, 1
    while 1:
        yield a
        a, b = b, a + b

>>> fib_g = fib()
>>> next(fib_g)
0
>>> next(fib_g)
1
>>> next(fib_g)
1
>>> next(fib_g)
2
>>> next(fib_g)
3
>>> next(fib_g)
5

Вызвав генераторную функцию fib() мы получили генератор. Затем мы итерируем этот генератор функцией next().

Остановка генератора

Если генератор «закончился» (т.е. просто вышли из функции генератора в конце его кода или по return), то автоматически возбуждается исключение StopIteration. Это не ошибка, это нормально, просто принятый способ обработки конца итератора.

def gen():
    yield 1
    yield 5
    # и все, код кончился, вышли
    
for x in gen():
    print(x) # 1, 5

for in сам ловит исключение StopIteration и просто завершает итерировать этот генератор.

Передача данных в генератор

У генераторов есть дополнительные методы, которые позволяют передавать внутрь генератора данные или возбуждать внутри него исключения. Это еще одно отличие от простых итераторов.

send() – отправить данные в генератор. Переданное значение вернется из той конструкции yield, на которой возникла последняя пауза генератора. При этом генератор будет прокручен на один шаг, как если бы мы вызвали next:

val = yield i  # генератор вернет i, но внутри получит val из аргумента метода send

Пример. Этот генератор просто выдает числа от 0 и далее, при этом печатает в поток вывода все, что мы ему отправляем.

def my_gen():
    i = 0
    while True:
        val = yield i
        print('Got inside generator:', val)
        i += 1

>>> g = my_gen()
>>> next(g)
0
>>> g.send("hello")
Got inside generator: hello
1
>>> g.send("world")
Got inside generator: world
2

Обратите внимание, что первый раз нельзя посылать в генератор данные, пока мы не прокрутили его до первого yield. Нужно либо взывать next(g) или g.send(None) – это одно и тоже.

Не будет ошибкой отправлять данные генератору, который не получает их (нет использования значения конструкции yield). Например, нашему генератору fib() можно отравить все, что угодно, он просто проигнорирует.

throw() – бросить исключение внутри генератора. Исключение будет возбуждено из того выражение yield, где генератор последний раз остановился.

>>> g = my_gen()   # my_gen из прошлого примера

>>> g.throw(TypeError, 'my error')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 1, in my_gen
TypeError: my error

close() – закрыть генератор. Бросает внутри генератора особое исключение GeneratorExit. Это исключение, даже если оно не обработано, не распространится в код, вызвавший close(). Но, если мы поймали это исключение внутри генератора, то после закрытия генератора нельзя уже делать yield, рискуя получить RuntimeError. Остальные виды исключений будут распространяться из генератора в код, его вызывающий. Попытка итерировать закрытый итератор приведет к исключению StopIteration (закрытый генератор – пустой итератор).

>>> g = my_gen()
>>> next(g)
0
>>> next(g)
Got inside generator: None
1
>>> g.close()
>>> next(g)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

Бонус

Как взять из итератора (в том числе из генератора) N первых значений?

Можно, конечно, написать свою функцию. Но зачем, если она уже есть в стандартном модуле itertools. Этот модуль содержит множество вспомогательных функций для работы с итераторами. Нам понадобится itertools.islice. Первый аргумент – итератор (ну или генератор), остальные три – как в range.

>>> list(itertools.islice(fib(), 10))
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

>>> list(itertools.islice(fib(), 10, 20, 2))
[55, 144, 377, 987, 2584]

В первом примере мы передаем в функцию itertools.islice наш генератор чисел Фибоначчи и число чисел, которые надо вычислить (в нашем случае – 10).

Мы также применяем функцию list, чтобы посмотреть список значений, потому что itertools.islice возвращает не спикок, а именно новый итератор, в котором будут только интересные нам значений из исходного итератора.

Во втором примеры аргументов 4 штуки. В этом случае второй аргумент – начальный номер = 10, третий – конечный номер = 20 – (не включительно), и четвертый – шаг = 2. (Очень похоже на range, не так ли?)

Специально для канала @pyway.

Звезды в Python

Снимок далекой звезды в космосе

Звездочка (этот символ называется «астериск») – один из самых многоликих операторов в Python. Едва ли хватит пальцев руки, чтобы перечислить все его применения. Давайте по порядку.

Умножение и размножение

Самое простое применение одиночного астериска: умножение чисел. Двойного – возведение числа в степень.

>>> 3 * 4
12
>>> 3 ** 3
27
>>> 4 ** 0.5
2.0

Если мы умножим список (или кортеж) на целое число, то получим новый список (или кортеж), где элементы исходного повторены несколько раз. Подобное случится и со строкой. Если мы умножаем на ноль (0) или на число меньше ноля, то получим пустой список, кортеж или строку.

>>> [1, 2, 3] * 5
[1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3]
>>> ("abc", "foo", "bar") * 3
('abc', 'foo', 'bar', 'abc', 'foo', 'bar', 'abc', 'foo', 'bar')
>>> "hello world" * 4
'hello worldhello worldhello worldhello world'
>>> [1, 2, 3] * 0
[]
>>> "wat" * -10
''

Звезды в аргументах функций

Одна звездочка позволяет получить все или некоторые позиционные аргументы функции в виде кортежа. Позиционные – это те, которые просто подряд передаются без указания имени. Те, что с именем, это аргументы ключевого слова. Разберемся сначала с первыми. Ниже идут два примера. В первом мы получаем все позиционные аргументы в кортеж с названием args. Во втором случае мы обязуем пользователя наших функций передать как минимум 2 аргумента (они попадут в x и y) и дополнительно произвольное число (можно ни одного) аргументов, которые попадут в кортеж rest. Я специально развал их по-разному, не обязательно всегда называть их args. Обратите внимание, что это всегда будет кортеж, даже если мы передадим один аргумент, то получим кортеж из одного элемента.

def foo(*args):
    print('You passed {} args, they are {}'.format(len(args), args))

def foofoo(x, y, *rest):
    print('x = {}, y = {}, rest = {}'.format(x, y, rest))

>>> foo()
You passed 0 args, they are ()
>>> foo(10, 20, "str", {})
You passed 4 args, they are (10, 20, 'str', {})

>>> foofoo(11, 22)
x = 11, y = 22, rest = ()
>>> foofoo(12, 13, 15)
x = 12, y = 13, rest = (15,)
>>> foofoo(12, 13, 15, 20)
x = 12, y = 13, rest = (15, 20)

Пример такой функции мы недавно рассматривали – это хорошо знакомый нам print. Как известно, он принимает произвольное число аргументов, пользуясь выше описанным механизмом. Можете пройти по ссылке и увить его сигнатуру.

Важно, чтобы «звездная переменная» была после всех позиционных аргументов, иначе мы получим ошибку SyntaxError.

Две звездочки перед названием аргумента позволяют нам получить произвольное число произвольно названных именованных аргументов (еще их называют аргументами ключевых слов). Такую переменную часто называют **kwargs (от key-word arguments). В нее будет записан словарик (dict) из пар название ключевого слова (строка) и значение аргумента. Давайте обратимся к примерам:

def baz(**kwargs):
    print(kwargs)

>>> baz(x=1, y=2, z="hello")
{'y': 2, 'x': 1, 'z': 'hello'}
>>> baz()
{}

Как видно, без аргументов мы получили пустой словарь. А с именованными аргументами получили словарь, где их имена – ключи-строки, а их значения – собственно сами переданные значений. В функцию baz нельзя передать аргументы без имен, будет ошибка, потому что без имен – позиционные аргументы, а мы никак их не обозначили.

def foobaz(x, y, **kwargs):
    print('x = {} and y = {}'.format(x, y))
    print('also:', kwargs)

>>> foobaz(2, 3)
x = 2 and y = 3
('also:', {})

>>> foobaz(2, 3, other=77, z=88)
x = 2 and y = 3
('also:', {'other': 77, 'z': 88})

>>> foobaz(x=100, y=200, z=300)
x = 100 and y = 200
('also:', {'z': 300})

Тут мы требуем ровно два позиционных аргумента (x и – обязательные аргументы) и любое количество аргументов ключевых слов, которые попадут в kwargs. Нюанс: мы может передать x и y по именам (последний пример), но они не попадут в kwargs, а останутся только в своих соответствующих переменных x и y, и только z попал в kwargs, потому что мы заранее его не объявили.

Можно сочетать *args и **kwags в одной функции, причем именно в этом порядке.

def megafunc(x, y, *args, **kwargs):
    print('x = {} and y = {}'.format(x, y))
    print('also args: {}'.format(args))
    print('also kwargs {}'.format(kwargs))

>>> megafunc(10, 15)
x = 10 and y = 15
also args: ()
also kwargs {}

>>> megafunc(10, 15, 20)
x = 10 and y = 15
also args: (20,)
also kwargs {}

>>> megafunc(10, 15, 20, 22)
x = 10 and y = 15
also args: (20, 22)
also kwargs {}

>>> megafunc(10, 15, 20, 25, troll=30, dwarf=40)
x = 10 and y = 15
also args: (20, 25)
also kwargs {'troll': 30, 'dwarf': 40}

Еще одно применение звездочки – заставить вызывать функцию, указывая название аргументов в обязательном порядке.

def strict_foo(x, *, cat, dog):
    print(x, cat, dog)

>>> strict_foo(1, 2, 3)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: strict_foo() takes 1 positional argument but 3 were given

>>> strict_foo(1, cat=2, dog=3)
1 2 3

Имя x мы можем и не указывать, просто передадим значение, но cat и dog мы обязаны указать по имени. Зачем это надо? Если функция принимает много разных аргументов, то мы можем принудить указывать имена, чтобы пользователь не перепутал их порядок. Еще такой код просто выглядит более читаемым.

Раскрытие коллекций в аргументах функций при вызове

Также звездочка и двойная звездочка находят применение по другую сторону баррикад – при вызове функции. В предыдущем разделе мы обсуждали, как получать аргументы, а сейчас говорим о том, как их передавать.

Передавая кортеж или список со одной звездочкой – он раскроется в череду позиционных аргументов. Справа от звездочки может быть как имя переменной, так и литерал коллекции или даже вызов функции. Определим две функции: в одной foo – переменное число позиционных аргументов, в другой fixed_foo – фиксированное (три).

def foo(*args):
    print(args)

>>> foo(*[1, 2, 3])
(1, 2, 3)
>>> letters = ('a', 'b', 'c', 'd')
>>> foo(*letters)
('a', 'b', 'c', 'd')

def fixed_foo(a, b, c):
    print(a, b, c, sep=' and ')

>>> fixed_foo(*(1, 2, 3))
1 and 2 and 3
>>> fixed_foo(*(1, 2, 3, 4))
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: fixed_foo() takes 3 positional arguments but 4 were given

В foo мы вольны передать список или кортеж любой длины, а в fixed_foo мы обязаны передать список или кортеж длины 3, не больше, не меньше.

Допускается использовать в одном вызове звездочку несколько раз:

>>> foo(*[1, 2, 3], *['a', 'b', 'c'])
(1, 2, 3, 'a', 'b', 'c')

Можно догадаться, что двойная звездочка несет схожую функциональность – раскрывает словарь в именованные аргументы функции.

def baz(a, b, c):
    print('a = ', a)
    print('b = ', b)
    print('c = ', c)

>>> baz(**{'a': 1, 'b': 2, 'c': 3})
a =  1
b =  2
c =  3

Если у нас нет **kwargs, то передаваемый словарь должен содержать ровно столько пар ключ-значение, сколько есть аргументов в функции (без значения по-умолчанию, естественно), причем ключи должен совпадать по именам с названиями аргументов (а вот порядок не важен). То есть при ‘a’: 1 в a попадет 1 и так далее.

>>> baz(10, **{'b': 20, 'c': 30})
a =  10
b =  20
c =  30

>>> baz(b=10, **{'a': 20, 'c': 30})
a =  20
b =  10
c =  30

В примерах выше мы передаем один аргумент явно и два аргумента словарем.

Возможны разнообразные варианты вызова функции. Даже такие:

def uber_func(a, b, c, d, x=10, y=20):
    print(f'a = {a} and b = {b} and c = {c} and d = {d}, x = {x}, y = {y}')

>>> uber_func(*[1, 2], 3, **{'d': 100, 'x': 200})
a = 1 and b = 2 and c = 3 and d = 100, x = 200, y = 20

Склеивание списков и словарей

Мы можем «встраивать» одни списки, кортежи и словари в другие с помощью астерисков. Это значит, что мы добавляем элементы одной коллекции в другую. Одинарная звездочка – для списков и кортежей:

>>> ( *(1, 2), *(3, 4) )
(1, 2, 3, 4)

>>> (1, 2) + (3, 4)  # тоже самое же?
(1, 2, 3, 4)

>>> [ *(1, 2), *[3, 4] ]
[1, 2, 3, 4]

>>> ( *[1, 2], *(3, 4) )
(1, 2, 3, 4)

Это похоже на то, как мы склеиваем коллекции оператором плюс (+), вот только плюсом нельзя соединить кортеж и список, будет ошибка. А через звездочку можно. Но согласитесь, сложение читается понятнее и легче.

Со словарями это немного полезнее. Применение двойной звезды (**) позволяет обновить один словарь элементами другого или нескольких других.

>>> d = { 'x': 10, 'y': 20 }
>>> d2 = { 'a': 100, 'b': 200 }

>>> { **d, **d2 }
{'x': 10, 'y': 20, 'a': 100, 'b': 200}

>>> { **d, **d2, 'other': 'foo' }
{'x': 10, 'y': 20, 'a': 100, 'b': 200, 'other': 'foo'}

Работает похоже, как метод update, но не меняет исходные словари, а создает новый. Если есть совпадающие ключи, то будет взято значение последнего из них:

>>> d_old = { 'president': 'Medvedev' }
>>> d_new = { 'president': 'Putin' }
>>> { **d_old, **d_new }
{'president': 'Putin'}

Распаковка

Позволяет раскидывать по переменным содержимое сложных структур из списков и кортежей. В переменную со звездочкой попадут в виде списка все остальные значения распакуемой структуры, кроме указанных явно. Лучше это понять на примерах:

>>> numbers = [1, 2, 3, 4, 5, 6]

>>> *a, = numbers   # да, там реально одинокая запятая после a
>>> a
[1, 2, 3, 4, 5, 6]

>>> *a, b, c = numbers
>>> a, b, c
([1, 2, 3, 4], 5, 6)

>>> a, b, *middle, c = numbers
>>> a, b, middle, c
(1, 2, [3, 4, 5], 6)

>>> [a, b, *middle, c] = numbers   # скобки можно любые
>>> a, b, middle, c
(1, 2, [3, 4, 5], 6)

Имя со звездочкой может быть как в начале, так и в конце кортежа и даже в середине. В последнем и в предпоследнем примере мы берем первый (a), второй (b) элементы; потом все, кроме последнего в middle пойдут как список, и последний в – c.

Если у нас один элемент со звездочкой и ни одного без звездочки – мы должны после него указать запятую (признак кортежа).

Не важно в какие скобки мы обернем верхний уровень: в круглые, квадратные или в никакие. Обычно скобки опускают.

На одном уровне может быть только 1 элемент со звездой.

>>> *n1, x, *n2 = numbers   # так нельзя!
  File "<stdin>", line 1
SyntaxError: two starred expressions in assignment

На нескольких уровней могут быть свои звездные выражения:

>>> a, [x, y, *rest], *others, last = 100, [20, 30, 40, 50, 60], 120, 140, 160
>>> print(a, x, y, rest, others, last)
100 20 30 [40, 50, 60] [120, 140] 160

При таком присваивании значения переменных копируются.

Справа от звездного присваиванию могут быть любые итераблы, например range:

>>> x1, *middle, x2 = range(10)
>>> x1, middle, x2
(0, [1, 2, 3, 4, 5, 6, 7, 8], 9)

Пока это все применения звездочки в Python, которые мне удалось вспомнить или найти.

Специально для канала PyWay.