Quine на Python

Программисты тоже умеют развлекаться, так что давайте сегодня развлечемся и напишем quine (квайн). Квайн – это такая программа, которая выводит на экран свой же код, ни больше, ни меньше. Сразу договоримся, что пустая программа на Python, которая ничего не выводит, не считается квайном; это не интересно.

В Python у нас есть чудо-переменная, которая хранит путь к текущему интерпретируемому файлу, поэтому можно сделать так:

print(open(__file__).read())

Эта программа открывает свой же файл, читает и печатает его целиком. Но это жульничество, потому что в квайнах не принято читать файлы. Хорошо, а что если назвать файл print(__file__), записать в него print(__file__) и выполнить python "print(__file__)". Будет работать, но можешь вот без этих трюков, чисто кодом? Да без проблем!

Нам нужно что-то печатать, значит берем print:

>>> print('?')
?

Программа начинается с print…, значит и печатать будем тоже самое:

>>> print('print()')
print()

Не получается, потому что у нас тут уже два print да кавычки, а печатается только один. Так можно плодить print до бесконечности, но все равно не будет хватать одного в выводе. Будем решать поэтапно. Давайте заведем переменную s с кодом нашей программы.

>>> s='print()';print(s)
print()

Но код теперь начинается с s=, исправим:

>>> s='s=?;print(s)';print(s)
s=?;print(s)

Смотрите, уже похоже, осталось только на место знака вопроса воткнуть содержимое строки s из оригинального кода. Это самый важный момент. Используем format, а точнее s.format(s), который в определенном месте строки s вставит саму же строку s, таким образом, мы «разрываем рекурсию»:

>>> s='s={};print(s)';print(s.format(s))
s=s={};print(s);print(s)

Отлично! Но тут два недостатка: во-первых, не забыть добавить s.format(s) в саму строку s:

>>> s='s={};print(s.format(s))';print(s.format(s))
s=s={};print(s.format(s));print(s.format(s))

Во-вторых, нужно вернуть на место кавычки. Не зря я недавно рассказывал о флагах преобразования строк. Используем флаг {!r} в формате, чтобы вывести repr(s), который для строк содержит одинарные кавычки:

>>> s='s={!r};print(s.format(s))';print(s.format(s))
s='s={!r};print(s.format(s))';print(s.format(s))

Ура! Квайн готов и работает!

Вы можете сделать квайн короче, используя другой стиль форматирования строк через процент: {!r} заменяется на %r, s.format(s) на s%s, плюс экранируется процент внутри самой строки s%%s (%% понимается как сам знак процента, а не как место для подстановки):

>>> s='s=%r;print(s%%s)';print(s%s)
s='s=%r;print(s%%s)';print(s%s)

🐉 Специально для канала @pyway. Подписывайтесь на мой канал в Телеграм @pyway 👈 

Класс-декоратор и декоратор класса

Эти две темы не так близки, как кажется, но я не мог разнести их в разные посты, лишая себя такого заголовка. Узнаем, как из класса сделать декоратор, и как написать декоратор для класса. Код примеров доступен в GIST под каждым из разделов.

Класс как декоратор

Если у класс реализовать магический метод __call__ , то экземпляр такого класса можно будет вызывать как функцию, при этом, очевидно, будет вызываться просто этот самый магический метод. Такой объект называют функтором. Пример:

class Functor:
    def __call__(self, a, b):
        print(a * b)

f = Functor()
# вызов как будто функция
f(10, 20)

Как мы помним из https://tirinox.ru/parametric-decorator/ , справа от собачки в декораторе может стоять не только функция-декоратор, но любой вызываемый объект, например, функтор. __call__, которого будет принимать на вход единственный параметр – декорируемую функцию. На примере того же декоратора-повторителя вызовов:

from functools import wraps

class Repeater:
    def __init__(self, n):
        self.n = n

    def __call__(self, f):
        @wraps(f)
        def wrapper(*args, **kwargs):
            for _ in range(self.n):
                f(*args, **kwargs)
        return wrapper

@Repeater(3)
def foo():
    print('foo')

foo() 
# foo
# foo
# foo

Обратите внимание, что получился сразу декоратор с параметрами, где параметры – это всего лишь аргументы конструктора (нам ведь нужен экземпляр класса, а не сам класс). Поэтому если вы пишите сложный декоратор да еще и с параметрами, стоит присмотреться к его реализации классом-функтором, чтобы избежать трехэтажных вложенных функций.

Код здесь https://gist.github.com/tirinox/b6fd34de1b9de229ec2666f160c1ad82.

Декоратор для класса

Так как в Python классы создаются динамически по время интерпретации исходного кода, то можно влиять на этот процесс, например, путем декорирования. Аналогично декораторам функций, декоратор класса призван модифицировать поведение и содержание класса, не изменяя его исходный код. Похоже на наследование, но есть отличия:

  1. Декоратор класса имеет более глубокие возможности по влиянию на класс, он может удалять, добавлять, менять, переименовывать атрибуты и методы класса. Он может возвращать совершенно другой класс.
  2. Старый класс «затирается» и не может быть использован, как базовый класс при полиморфизме
  3. Декорировать можно любой класс одним и тем же универсальный декоратором, а при наследовании – мы ограничены иерархией классов и должны считаться с интерфейсами базовых классов.
  4. Презираются все принципы и ограничения ООП (из-за пунктов 1-3).

Декораторы классов полезны, чтобы внедриться в класс (иногда незаметно) и массово воздействовать на его методы и атрибуты. Типичный пример – создадим декоратор, который будет измерять время выполнения каждого метода класса. При этом сам класс никаких изменений не претерпит и не будет знать, что за ним следят:

import time

# это вспомогательный декоратор будет декорировать каждый метод класса, см. ниже
def timeit(method):
    def timed(*args, **kw):
        ts = time.time()
        result = method(*args, **kw)
        te = time.time()
        delta = (te - ts) * 1000
        print(f'{method.__name__} выполнялся {delta:2.2f} ms')
        return result
    return timed


def timeit_all_methods(cls):
    class NewCls:
        def __init__(self, *args, **kwargs):
            # проксируем полностью создание класса
            # как создали этот NewCls, также создадим и декорируемый класс
            self._obj = cls(*args, **kwargs)

        def __getattribute__(self, s):
            try:
                # папа, у меня есть атрибут s?
                x = super().__getattribute__(s)
            except AttributeError:
                # нет сынок, это не твой атрибут
                pass
            else:
                # да сынок, это твое
                return x

            # объект, значит у тебя должен быть атрибут s
            attr = self._obj.__getattribute__(s)

            # метод ли он?
            if isinstance(attr, type(self.__init__)):
                # да, обернуть его в измеритель времени
                return timeit(attr)
            else:
                # не метод, что-то другое
                return attr
    return NewCls


@time_all_class_methods
class Foo:
    def a(self):
        print("метод a начался")
        time.sleep(0.666)
        print("метод a кончился")


f = Foo()
f.a()

# метод a начался
# метод a кончился
# a 668.74 ms

Рассмотрим подробно части кода. timeit – это простой декоратор для функций, мы его уже умеем делать. Он нужен для того, чтобы декоратор класса timeit_all_methods обернул в timeit каждый метод декорируемого класса.

Декоратор timeit_all_methods содержит в себе определение нового класса NewCls и возвращает его вместо оригинального класса. Т.е. класс Foo – это уже не Foo, а NewCls. Конструктор класса NewCls принимает произвольные аргументы (ведь нам не известно заранее, какой конструктор у Foo, и у любого другого класса, который мы декорируем). Поэтому конструктор просто создает поле, где будет хранить экземпляр оригинального класса, и передает ему в конструктор все свои аргументы.

Самый сложный метод – __getattribute__ – он полон магии. Он вызывается, когда кто-то пытается обратиться как какому угодно атрибуту (полю, методы и т. п.) класса NewCls. Первым делом мы должны обратиться к своему родителю super() и спросить у него, не обладаем ли мы сами атрибутом, который проверяем. Именно к родителю, чтобы избежать рекурсии (иначе мы попадем в тот же метод, в котором уже находимся)! Если это наш атрибут (атрибут класса декоратора) – вернем его сразу, с ним ничего не надо делать. Иначе, вероятно, это атрибут исходного класса – получим его у него. И проверим его тип, сравним его с типом любого метода. Если тип – метод (bound method), то обернем его в декоратор timeit и вернем, иначе (это не метод, а свойство или статический метод) – вернем без изменений.

Таким образом мы проксируем все атрибуты обернутого класса через NewCls, оборачивая в timeit только методы.

Задание на дом: создать класс декоратор класса, иначе говоря скрестить два раздела статьи и сделать класс-функтор, который может декорировать другой класс. Идея: декоратор, который измеряет время выполнения каждого метода, и печатает предупреждение, только если время выполнения было больше критического (параметр):

@TimeItCritical(critical_time=0.3)
class Foo:
    def a(self):
        print("медленный метод начался")
        time.sleep(1.0)
        print("медленный метод кончился")

    def b(self):
        time.sleep(0.1)
        print('быстрый метод')

f = Foo()
f.a()
f.b()

# медленный метод начался
# медленный метод кончился
# a выполнялся медленно 1.0011 s
# быстрый метод

Код доступен в https://gist.github.com/tirinox/507258b36e77dfec1448f8cf1d259356

🤩 Специально для канала @pyway. Подписывайтесь на мой канал в Телеграм @pyway! 👈