Метка: списки

Комбинаторика в Python

Комбинаторика — это раздел математики, в котором изучают, сколько комбинаций, подчинённых тем или иным условиям, можно составить из данных объектов. Короче, это все о сочетаниях, перестановках, числе способов и тому подобному.

Почему важна комбинаторика? Нет, не только лишь для решения олимпиадных задач, но также комбинаторика – один из столпов теории вероятностей, которая в свою очередь служит фундаментом для машинного обучения – одно из мощнейших трендов в ПО начале 21-го века!

В встроенном в Python модуле itertools существует ряд комбинаторных функций. Это:

  • product() – прямое (Декартово) произведение одного или нескольких итераторов.
  • permutations() – перестановки и размещения элементов множества.
  • combinations() – уникальные комбинации из элементов множества.
  • combinations_with_replacement() – комбинации с замещением (повторами, возвратами).

О каждой из них расскажу подробно. Для начала импортируем все нужные функции из модуля:

from itertools import *

Прямое произведение

Прямое, или декартово произведение двух множеств — множествоэлементами которого являются все возможные упорядоченные пары элементов исходных множеств. Проще говоря мы берем из первого множества один элемент, а потом из второго выбираем элемент и составляем их в кортеж. Так вот все способы выбрать так элементы – составят декартово произведение. Пример:

>>> A = [1, 2, 3]
>>> B = "123"
>>> print(*product(A, B))
(1, 'a') (1, 'b') (1, 'c') (2, 'a') (2, 'b') (2, 'c') (3, 'a') (3, 'b') (3, 'c')

Примечания. Во-первых, заметьте, что элементы следуют в строгом лексографическом порядке: сначала берется нулевой элемент из первой последовательности и сочетается с каждым по очереди из второй последовательности. Во-вторых, аргументами функции могут быть любые итерируемые объекты конечной длины. Я взял для примера список и строку, причем строка автоматически разбивается на символы.

В коде произведение множеств эквивалентно вложенным циклам:

>>> print(*[(a, b) for a in A for b in B])
(1, '1') (1, '2') (1, '3') (2, '1') (2, '2') (2, '3') (3, '1') (3, '2') (3, '3')

Результат такой же, но рекомендую использовать именно библиотечную функцию, так как ее реализация, наверняка, будет лучше.

Вы можете передать в функцию больше последовательностей:

>>> print(*product([1, 2, 3]))
(1,) (2,) (3,)

>>> print(*product([1, 2, 3], [10, 20, 30]))
(1, 10) (1, 20) (1, 30) (2, 10) (2, 20) (2, 30) (3, 10) (3, 20) (3, 30)

>>> print(*product([1, 2, 3], [10, 20, 30], [100, 200, 300]))
(1, 10, 100) (1, 10, 200) (1, 10, 300) (1, 20, 100) (1, 20, 200) (1, 20, 300) (1, 30, 100) (1, 30, 200) (1, 30, 300) (2, 10, 100) (2, 10, 200) (2, 10, 300) (2, 20, 100) (2, 20, 200) (2, 20, 300) (2, 30, 100) (2, 30, 200) (2, 30, 300) (3, 10, 100) (3, 10, 200) (3, 10, 300) (3, 20, 100) (3, 20, 200) (3, 20, 300) (3, 30, 100) (3, 30, 200) (3, 30, 300)

Каждый выходной элемент будет кортежем (даже в случае, если в нем только один элемент!). Также обратите внимание на то, что функция product (как и все остальные из сегодняшнего набора) возвращает не список, а особый ленивый объект. Чтобы получить все элементы, нужно преобразовать его в список функцией list:

>>> product([1, 2, 3], 'abc')
<itertools.product object at 0x101aef8c0>

>>> list(product([1, 2, 3], 'abc'))
[(1, 'a'), (1, 'b'), (1, 'c'), (2, 'a'), (2, 'b'), (2, 'c'), (3, 'a'), (3, 'b'), (3, 'c')]

Количество элементов на выходе будет произведением длин всех последовательностей на входе:

N(x_1, ..., x_n) = \prod (len(x_i))

В функцию product можно передать именованный параметр repeat, который указывает сколько раз повторять цепочку вложенных циклов (по умолчанию один раз). Если repeat >= 2, то это называют декартовой степенью. То есть множество умножается на себя несколько раз. Так при repeat=2 эквивалентным кодом будет:

>>> [(a, b, a1, b1) for a in A for b in B for a1 in A for b1 in B] == list(product(A, B, repeat=2))
True

В таком случае количество элементов в результате будет вычисляться по схожей формуле с учетом того, что каждый множитель будет в степени repeat:

N(x_1, ..., x_n, repeat) = \prod (len(x_i))^{repeat}

Перестановки

Функция permutations возвращает последовательные перестановки элементов входного множества. Первый элемент – будет исходным множеством. Второй – результат перестановки какой-то пары элементов и так далее, пока не будут перебраны все уникальные комбинации. Уникальность здесь рассматривается по позициям элементов в исходной последовательности, а не по и их значению, то есть элементы между собой алгоритмом не сравниваются. Важны только их индексы.

Число объектов остается неизменными, меняется только их порядок.

>>> print(*permutations("ABC"))
('A', 'B', 'C') ('A', 'C', 'B') ('B', 'A', 'C') ('B', 'C', 'A') ('C', 'A', 'B') ('C', 'B', 'A')
Перестановки трех элементов

Второй параметр r отвечает за количество элементов в перестановках. По умолчанию будут выданы полные перестановки (длиной, равной длине n исходной последовательности), никакие элементы исходного множества не будут выброшены, а просто переставлены местами. Если задать 0 <= r <= n, в каждой выборке будет содержаться по r элементов. Иными словами из n входных элементов будем выбирать r объектов и переставлять всеми возможными способами между собой (то есть меняется и состав выбранных объектов, и их порядок). Получившиеся комбинации называются размещениями из n объектов по r.

Например размещения для двух элементов из коллекции из трех элементов:

>>> print(*permutations("ABC", 2))
('A', 'B') ('A', 'C') ('B', 'A') ('B', 'C') ('C', 'A') ('C', 'B')

# 2 из 4
>>> print(*permutations([1, 2, 3, 4], 2))
(1, 2) (1, 3) (1, 4) (2, 1) (2, 3) (2, 4) (3, 1) (3, 2) (3, 4) (4, 1) (4, 2) (4, 3)

Количество вариантов получится по формуле (n – длина исходной последовательности):

N=\frac{n!}{(n - r)!}

При r > n будет пустое множество, потому что невозможно из более короткой последовательности выбрать более длинную. Максимальное число вариантов – для полной перестановки равняется n! (факториал).

Размещения выглядят так. Сначала выбрали по 2 элемента из 3, а потом переставили их внутри групп всеми способами. Итого 6 вариантов:

Размещения по 2 из 3 элементов.

Сочетания

combinations – функция, коротая выбирает все сочетания из входной последовательности. Пусть в ней имеется n различных объектов. Будем выбирать из них r объектов всевозможными способами (то есть меняется состав выбранных объектов, но порядок не важен). Получившиеся комбинации называются сочетаниями из n объектов по r, а их число равно:

C^r_n=\frac{n!}{r!(n - r)!}

Разница сочетаний и перестановок в том, что для сочетаний нам не важен порядок, а для перестановок он важен. Пример:

>>> print(*permutations([1, 2, 3], 2))
(1, 2) (1, 3) (2, 1) (2, 3) (3, 1) (3, 2)

>>> print(*combinations([1, 2, 3], 2))
(1, 2) (1, 3) (2, 3)

(1, 2) и (2, 1) – разные перестановки, но с точки зрения сочетаний – это одно и тоже, поэтому в combinations входит только один вариант из двух.

Второй параметр r – обязателен для этой функции. 0 <= r <= n. При r > n будет пустое множество.

Вот графический пример сочетаний из 3 по 2. Как видно, их вдвое меньше, чем размещений из 3 по 2, так как варианты с перестановками внутри групп не учтены по определению:

Сочетания с повторами

Функция combinations_with_replacement описывает, сколькими способами можно составить комбинацию по r элементов из элементов n типов (элементы в комбинации могут повторяться, но порядок их не важен). Обратите внимание на слово «тип«, в простых сочетаниях элементы не повторялись внутри одной выборки, они были как бы конкретными экземплярами.

На языке мешка с шарами, сочетания с повторами значит, что мы достаем шары из мешка, а потом кладем их обратно, записывая их цвета (цвет это и есть в данном случае аналог типа). Вполне может быть так, что мы достали красный шар два раза подряд, ведь после первого раза мы сунули его обратно в мешок. Пример:

>>> print(*combinations_with_replacement(['red', 'white', 'black'], 2))
('red', 'red') ('red', 'white') ('red', 'black') ('white', 'white') ('white', 'black') ('black', 'black')

Поэтому, имея возможность брать один и тот же элемент несколько раз, можно выбрать из последовательности в три элемента 4, и 5, и сколь угодно много (больше, чем было исходных типов). Например, по 4 из 2:

>>> print(*combinations_with_replacement(['red', 'black'], 4))
('red', 'red', 'red', 'red') ('red', 'red', 'red', 'black') ('red', 'red', 'black', 'black') ('red', 'black', 'black', 'black') ('black', 'black', 'black', 'black')

Вот графически сочетания с повторами по 2 из 3:

Вот графически сочетания с повторами по 2 из 3

Формула числа элементов на выходе такова:

N = \frac{(n+r-1)!}{r!(n-1)!}

Бонус – брутфорс пароля

Как бонус предлагаю вам применение функции product() для брутфорса паролей. Сперва мы задаем набор символов, которые могут встречаться в пароле, наш алфавит, например такой:

import string
# все буквы и цифры
alphabet = string.digits + string.ascii_letters
# 0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ

А потом перебираем все возможные сочетания с длинами от минимальной до максимальной. Не забываем их склеить в строку:

def brute_force(alphabet, min_len, max_len):
    # функция - склеиватель последователностей символов в строку
    joiner = ''.join

    for cur_len in range(min_len, max_len + 1):
        yield from map(joiner, product(alphabet, repeat=cur_len))

Пример применения:

# сокращенный алфавит для иллюстрации работы
alphabet = '123AB'
print(*brute_force(alphabet, 1, 3), sep=', ')

# вывод: 1, 2, 3, A, B, 11, 12, 13, 1A, 1B, 21, 22, 23, 2A, 2B, 31, 32, 33, 3A, 3B, A1, A2, A3, AA, AB, B1, B2,
 B3, BA, BB, 111, 112, 113, 11A, 11B, 121, 122, 123, 12A, 12B, 131, 132, 133, 13A, 13B, 1A1, 1A2, 1A3, 1AA, 
1AB, 1B1, 1B2, 1B3, 1BA, 1BB, 211, 212, 213, 21A, 21B, 221, 222, 223, 22A, 22B, 231, 232, 233, 23A, 23B, 
2A1, 2A2, 2A3, 2AA, 2AB, 2B1, 2B2, 2B3, 2BA, 2BB, 311, 312, 313, 31A, 31B, 321, 322, 323, 32A, 32B,
 331, 332, 333, 33A, 33B, 3A1, 3A2, 3A3, 3AA, 3AB, 3B1, 3B2, 3B3, 3BA, 3BB, A11, A12, A13, A1A, A1B,
 A21, A22, A23, A2A, A2B, A31, A32, A33, A3A, A3B, AA1, AA2, AA3, AAA, AAB, AB1, AB2, AB3, ABA, 
ABB, B11, B12, B13, B1A, B1B, B21, B22, B23, B2A, B2B, B31, B32, B33, B3A, B3B, BA1, BA2, BA3, BAA, 
BAB, BB1, BB2, BB3, BBA, BBB

Специально для канала @pyway. Подписывайтесь на мой канал в Телеграм @pyway 👈 

Найти первый элемент списка по условию

Пускай имеется такая задача: дан список с численными элементами. Требуется найти и вернуть первый отрицательный элемент. Казалось бы, должна быть какая-нибудь встроенная функция для этого, но нет. Придется писать ее самим. Решение в лоб:

items = [1, 3, 5, -17, 20, 3, -6]

for x in items:
    if x < 0:
        print(x)
        break
else:
    print('not found')

Такое решение работает, но выглядит скорее по-бейсиковски, нежели чем по-питоновски. Пытаясь проявить смекалку, некоторые извращаются и пишут так:

result = list(filter(lambda x: x < 0, items))[0]
print(result)

По-моему, стало гораздо сложнее, хоть и в одну строку. А может лучше так:

result = [x for x in items if x < 0][0]

Что ж, теперь лаконичнее, но все равно не идеал. Какая самая большая ошибка здесь? Что в первом, что во втором случае идет перебор всего итератора до конца, а потом отбрасываются все лишние значения, кроме нулевого индекса. Тогда как изначальный код останавливается, найдя нужно значение, экономя и время, и память.

Правильное решение

Лучше использовать встроенную функцию next – она возвращает следующий элемент из итератора, а в качестве итератора мы напишем генераторное выражение с if. Вот так:

result = next(x for x in items if x < 0)

Вот это коротко, экономно и очень по-питоновски (in a pythonic way). Остается одна проблемка: если элемент не найден, что будет брошено исключение StopIteration. Чтобы подавить его, достаточно вторым аргументом в next передать значение по-умолчанию. Если оно задано, то оно будет возвращено вместо возбуждения исключения, если в итераторе нет элементов, то есть не найдено удовлетворяющих условию элементов в исходной коллекции. И не забыть обернуть генераторное выражение в скобки:

items = [1, 2, 4]
result = next((x for x in items if x < 0), 'not found')
print(result)  # not found

С произвольной функцией, задающей критерий поиска (ее еще называют предикат – predicate) это выглядит так:

def is_odd(x):
    return x % 2 != 0

result = next(x for x in items if is_odd(x))
# или еще лучше
result = next(filter(is_odd, items))

Так как в Python 3 filter работает лениво, как и генератор, она не «обналичивает» весь исходный список через фильтр, а лишь идет до первого удачно-выполненного условия. Любите итераторы! ✌️ 

Специально для канала @pyway. Подписывайтесь на мой канал в Телеграм @pyway 👈 

Python: все про del

КДПВ

Инструкция del (от англ. delete), как можно понять из названия, нужна чтобы что-то удалять, а именно имена переменных, атрибуты объектов, элементы списков и ключи словарей.

1. Удаление элемента из списка по индексу:

>>> x = [1, 2, 3, 4, 5]
>>> del x[2]
>>> x
[1, 2, 4, 5]

Также можно удалять по срезам. Пример: удаление первых двух элементов:

>>> x = [1, 2, 3, 4, 5]
>>> del x[:2]
>>> x
[3, 4, 5]

Удаление последних n элементов: del x[n:].

Удаление элементов с четными индексами: del x[::2], нечетными: del x[1::2].

Удаление произвольного среза: del x[i:j:k].

Не путайте del x[2] и x.remove(2). Первый удаляет по индексу (нумерация с 0), а второй по значению, то есть находит в списке первую двойку и удаляет ее.

2. Удаление ключа из словаря. Просто:

>>> d = {"foo": 5, "bar": 8}
>>> del d["foo"]
>>> d
{'bar': 8}

А вот строки, байты и сеты del не поддерживают.

3. Удаление атрибута объекта.

class Foo:
    def __init__(self):
        self.var = 10

f = Foo()
del f.var
print(f.var)  # ошибка! 

Примечание: можно через del удалить метод у самого класса del Foo.method, но нельзя удалить метод у экземпляра класса del Foo().methodAttributeError.

4. Что значит удалить имя переменной? Это просто значит, что надо отвязать имя от объекта (при этом если на объект никто более не ссылается, то он будет освобожден сборщиком мусора), а само имя станет свободно. При попытке доступа к этому имени после удаления будет NameError, пока ему снова не будет что-то присвоено.

>>> a = 5
>>> del a
>>> a
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
NameError: name 'a' is not defined

Здесь кроется один нюанс. Если переменная была внутри функции помечена, как global, то после ее удаления глобальная переменная никуда не денется, а имя освободится лишь в зоне видимости функции. Причем если мы снова присвоим ей значение, то она опять окажется глобальной, т.е. del не очищает информацию о global!

g = 100
def f():
    global g
    g = 200
    del g  # g останется вне функции
    g = 300  # та же самая глобальная g

f()
print(g) # 300

Чтобы реально удалить глобальную переменную, можно сделать так: del globals()['g'].

В пунктах 1, 2, 3 в качестве имен могут фигурировать выражения и ссылки, так как операции идут над содержимым объектов, а в пункте 4 должно быть строго формальное имя удаляемого объекта.

>>> x = [1, 2, 3]
>>> y = x
>>> del y  # удаляет именно y, но x остается

Еще одна особенность del – она может удалить несколько вещей за раз, если передать в нее кортеж или список объектов на удаление.

x, y, z = 10, 20, [1, 2, 3]
del x, y, z[2]

Пусть задан список из 5 элементов:

x = [1, 2, 3, 4, 5]
del x[2], x[4]

Казалось бы, что будут удалены 2-й и 4-й элементы списка, но это не так! Удаления происходят один за одним, и сначала будет удален 2-й элемент, размер списка уменьшится на 1, а потом будет попытка удалить 4-й элемент, но она будет неудачна – вылетит исключение IndexError, потому что элемента с индексом 4 больше нет, а сам список будет равен [1, 2, 4, 5]. Так что будьте внимательны в подобных ситуациях!

Специально для канала @pyway. Подписывайтесь на мой канал в Телеграм @pyway 👈 

Умножение списка на число

Студент Макс узнал, что в Python умножать можно не только числа, но и другие объекты, например, строку на число:

>>> "Max" * 3
'MaxMaxMax'

«Вау!» — подумал Макс — «А что если умножить список на число?»:

>>> [42, 26] * 3
[42, 26, 42, 26, 42, 26]

Значит можно создать двумерный массив очень кратко и элегантно?

>>> [[]] * 3
[[], [], []]

Заполнить его:

arr = [[]] * 3
arr[0].append(10)
arr[1].append(20)
arr[2].append(30)

Макс ожидал получить:

[[10], [20], [30]]

А вышло:

[[10, 20, 30], [10, 20, 30], [10, 20, 30]]

😯 Как же так?! Дело в том, что умножение списка на число не копирует сам объект, а лишь ссылку на него. Все три элемента arr ссылаются на один и тот же список. Легко проверить, сравнив адреса объектов:

>>> arr[0] is arr[1]
True
>>> id(arr[0]), id(arr[1])
(4400840776, 4400840776)
Диаграмма: все элементы arr указывают на один и тот же список.

Аналогично в случае классов:

class Dummy: ...
arr = [Dummy()] * 2
arr[0].x = 10
arr[1].x = 20
print(arr[0].x, arr[0] is arr[1])  # 20 True

А вот с числами, строками и кортежами умножение списка будет работать как ожидал Макс, потому что это неизменяемые типы. Вот такая тонкость, которую нужно знать. Максу следовало бы написать так:

arr = [[] for _ in range(3)]  
arr[0].append(10)
arr[1].append(20)
arr[2].append(30)
>>> arr
[[10], [20], [30]]

Менее кратко, но зато работает без сюрпризов: каждую итерацию создается новый пустой список.

🐉 Специально для канала @pyway. Подписывайтесь на мой канал в Телеграм @pyway 👈 

Индексирование в Python

Бунгало на море

Положительные и отрицательные индексы

Допустим у нас есть список или кортеж.

x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
t = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

Без потери общности будем работать только со списком х (с кортежем t – тоже самое).

Легко получить i-тый элемент этого списка по индексу.

Внимание! Индексы в Python считаются с нуля (0), как в С++ и Java.

>>> x[0]
0
>>> x[7]
7
>>> x[11]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
IndexError: list index out of range

В последней строке мы вылезли за пределы (у нас в списке последний индекс – 10) и получили исключение IndexError.

Но что будет, если мы обратимся к элементу с отрицательным индексом? В С++ такой операцией вы бы прострелили себе ногу. А в Python? IndexError? Нет!

>>> x[-1]
10
>>> x[-2]
9
>>> x[-10]
1
>>> x[-11]
0

Это совершенно легально. Мы просто получаем элементы не с начала списка, а с конца (-i-тый элемент).
x[-1] – последний элемент.
x[-2] – предпоследний элемент.

Это аналогично конструкции x[len(x)-i]:

>>> x[len(x)-1]
10

Обратите внимание, что начальный (слева) элемент в отрицательной нотации имеет индекс -11.

Срезы

Срезы, они же slices, позволяют вам получить какую-то часть списка или кортежа.

Форма x[start:end] даст элементы от индекса start (включительно) до end (не включая end). Если не указать start – мы начнем с 0-го элемента, если не указать end – то закончим последним элементом (включительно). Соотвественно, x[:] это тоже самое, что и просто x.

>>> x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> x[2:8]
[2, 3, 4, 5, 6, 7]
>>> x[:8]
[0, 1, 2, 3, 4, 5, 6, 7]
>>> x[2:]
[2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> x[:]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Если end <= start, получим пустой список.

>>> x[5:3]
[]

Аналогично мы можем получать срезы с отчетом от конца списка с помощью отрицательных индексов.

>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> a[-4:-2]
[7, 8]

В этом случае также start < end, иначе будет пустой список.

Форма x[start:end:step] даст элементы от индекса start (включительно) до end (не включая end), в шагом step. Если step равен 1, то эта форма аналогична предыдущей рассмотренной x[start:end].

>>> x[::2]
[0, 2, 4, 6, 8, 10]
>>> x[::3]
[0, 3, 6, 9]
>>> x[2:8:2]
[2, 4, 6]

x[::2] – каждый второй элемент, а x[::3] – каждый третий. 

Отрицательный шаг вернет нам элементы в обратном порядке:

>>> x[::-1]
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

# как если бы:
>>> list(reversed(x))
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

# в обратном порядке с шагом 2
>>> x[::-2]
[10, 8, 6, 4, 2, 0]

Запись в список по срезу

Можно присвоить части списка, отобранной срезом, некоторый другой список, причем размер среза не обязан равняться размеру присваемого списка.

Если размеры равны (в примере два элемента в срезе и два элемента во втором списке) – происходит замена элементов.

>>> a = [1,2,3,4,5]
>>> a[1:3] = [22, 33]
>>> a
[1, 22, 33, 4, 5]

Если они не равны по размеру, то в результате список расширяется или сжимается.

>>> a = [1, 2, 3, 4, 5]
# размер среза = 1 элемент, а вставляем два (массив расширился)
>>> a[2:3] = [0, 0]
>>> a
[1, 2, 0, 0, 4, 5]

# тут вообще пустой размер среза = вставка подсписка по индексу 1
>>> a[1:1] = [8, 9]
>>> a
[1, 8, 9, 2, 0, 0, 4, 5]

# начиная с элемента 1 и кончая предпоследним элементом мы уберем (присвоив пустой список)
>>> a[1:-1] = []
>>> a
[1, 5]

Именованные срезы

Можно заранее создавать срезы с какими-то параметрами без привязки к списку или кортежу встроенной функцией slice. А потом применить этот срез к какому-то списку.

>>> a = [0, 1, 2, 3, 4, 5]
>>> LASTTHREE = slice(-3, None)
>>> LASTTHREE
slice(-3, None, None)
>>> a[LASTTHREE]
[3, 4, 5]

Вместо пустых мест для start, end или step здесь мы пишем None.

В заключение к этому разделу хочу сказать, что срезы списков возвращают списки, срезы кортежей – кортежи.

Индексирование своих объектов

В конце концов, мы можете определить самостоятельно поведение оператор индексации [], определив для своего класса магические методы __getitem__, __setitem__ и __delitem__. Первый вызывается при получении значения по индекса (или индексам), второй – если мы попытаемся нашему объекту что-то присвоить по индексу. А третий – если мы будет пытаться делать del по индексу. Необязательно реализовывать их все. Можно только один, например:

# при чтении по индексу из этого класса, мы получим удвоенных индекс
class MyClass:
    def __getitem__(self, key):
       return key * 2

myobj = MyClass()
myobj[3]  # вернет 6
myobj["privet!"] # приколись, будет: 'privet!privet!'

В качестве ключей можно использовать не только целые числа, но и строки или любые другие значения, в том числе slice и Ellipsis. Как вы будете обрабатывать их – решать вам. Естественно, логика, описанная в предыдущих разделах, здесь будет только в том случае, если вы ее сами так реализуете.

Пример. Экземпляр этого класса возвращаем нам список из целых чисел по индексу в виде срезу. Этакий бесконечный массив целых чисел, который почти не занимает памяти.

class IntegerNumbers:
  def __getitem__(self, key):
    if isinstance(key, int):
      return key
    elif isinstance(key, slice):
      return list(range(key.start, key.stop, key.step))
    else:
      raise ValueError

ints = IntegerNumbers() 
print(ints[10])  # 10
print(ints[1:10:2]) # [1, 3, 5, 7, 9]
print(ints["wwdwd"]) # так нельзя

Можно иметь несколько индексов. Ниже мы суммируем все значения индексов.

class MultiIndex:
  def __getitem__(self, keys): 
    # все индексы (если их 2 и больше попадут) в keys с типом tuple
    return sum(keys)  # просуммируем их

prod = MultiIndex()
print(prod[10, 20])  # напечает 30

Удачи в программировании и жизни!

🐉 Специально для канала @pyway. Подписывайтесь на мой канал в Телеграм @pyway 👈